
DOCUMENT RESUME

ED 042 368 24 EM 008 474

AUTHOR Judd, Wilson A.
TITLE The Development of an On-Line Laboratory for CAI and

Behavioral Research (1964-1968). Technical Report.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENCY Office' of Education (DHEW) , Washington, D.C. Bureau

of Research.
BUREAU NO BR-45-0253
PUB DATE 69
NOTE 149p.

EDRS PRICE EDRS Price MF-$0.75 HC-$7.55
DESCRIPTORS *Behavioral Science Research, Computer Assisted

Instruction, *Computer Based Laboratories, *Digital
Computers, Display Panels, Display Systems,
Documentation, Experimental Programs, Laboratory
Equipment, Personnel, Programing Languages, Student
Employment, *Time Sharing

IDENTIFIERS ETSS, *Experimental Time Sharing System, Learning
Research and Development Center, LRDC

ABSTRACT
Psychologists and educational researchers who may be

interested in installing a computer system in a behavioral science
laboratory may learn from the experience gained in the development
and operation of the Computer Facility at the Learning and Research
Development Center of the nUniversity of Pittsburgh. Built around a
PDP-7 computer, using a system designed much like an early process
control system, the Facility in 1969 developed a new time-sharing
system, the LRDC Experimental Time-Sharing System (ETSS). The
elements of its hardware are explained: main frame, information
transmission device control, automatic priority interrup system,
multiplexor, clocks, relays and buffers, PDP-7/PDP-9 interface,
input-output devices, subject terminals, and remote terminals. The
various aspects of the software are also explained: jobs and job
scheduling, master tables, memory management, operator control,
input/output device routines, stimulus device control routines,
response device control routines, utility programs, and higher-level
languages. The physical plant is described and personnel duties
listed. A description of 12 experimental control programs is
provided. The importance of documentation is emphasized and
appendices illustrate documentation undertaken. Practical advice and
references are given. (MF)

U.S. DEPARTMENT Of
HEALTH. EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS
BEEN REPRODUCED

EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION
ORIGINATING 11

POINTS OF VIEW OR OPINIONS

STATED DO NOT
NECESSARILY REPRESENT

OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

CO

Ks%

CV

O
LIU

THE DEVELOPMENT OF AN ON-LINE LABORATORY FOR

CAI AND BEHAVIORAL RESEARCH (1964-1968)

Wilson A. Judd

Learning Research and Development Center

University of Pittsburgh

Winter 1969

Now Assistant Professor, Department of Educational Psychology,
University of Texas, Austin.

Published by the Learning Research and Development Center supported
in part as a research and development center by funds from the United
States Office of Education, Department of Health, Education, and Wel-
fare. The opinions expressed in this publication do not necessarily
reflect the position or policy of the Office of Education and no official
endorsement by the Office of Education should be inferred.

FOREWORD

The Computer Support Facility of the Learning Research and
Development Center has three functions: (1) to service laboratory ex-
perimentation on processes, of learning related to instruction, (2) to sup-
port developmental work on the use of computers in education, including
instruction, testing, and instructional management, and (3) to conduct de-
sign and development work on the requisite software and hardware for
carrying out functions (1) and (2).

Preliminary planning of the facility took place during the year
1964-65. William W. Ramage, on part-time loan from the Westing-
house Research Laboratories, provided the expertise required for initial
system planning. He, together with other members of the Center staff,
identified objectives, drew up hardware specifications, contacted hard-
ware suppliers, and obtained bids for computer components. Also during
this year a document was prepared on the requirements for student sta-
tions, i.e. , student input-output terminals. The report emphasized the
considerations involved in designing the "interface between the .student
and the subject matter" (Glaser, Lipson & Ramage, 1964; Glaser &
Ramage, 1967). In the summer of 1965, delivery was made of compo-
nents for a system built around a Digital Equipment Corporation PDP-7
computer.

The period 1965-67 was, a time of system implementation and pilot
use, under, the guidance of William W. Ramage, an electronics engineer,
and Ronald G. Ragsdale, an educational psychologist. During this period,
effort included a joint project with the Westinghouse Research Laborator-
ies on the development of interface devices for subject-matter display and
student response. It was also a time of software development as described
in the following report. The system as then envisioned was described in

iii

a 1966 publication. From 1967-69, the system was in operation and under
further development, under the direction of J G. Castle and later,
Wilson A. Judd (William Ramage had returned to full-time study in
mathematics). Wilson Judd is especially qualified to write this report.
He initally worked with the system in running experiments in verbal learn-
ing; later, as director of the facility he was concerned broadly with the
development of an on-line computer laboratory for behavioral research.

As well as a history of past work, this report serves as back-
ground for new activities taking place in L RD C's Computer Support
Facility, under the direction of Robert Fitzhugh. Since the Fall of 1968,
the system has undergone a series of major modifications intended to sim-
plify programming and to facilitate its operation in a time-shared mode.
Input/output routines were rewritten and unnecessary options eliminated,
several internal changes were made which simplified the writing of re-
entrant programs, new programming conventions were adopted including
the use of push-down stacks for subroutine return storage, and a power-
ful set of operator control routines were added, which provided the com-
puter operator with greater control over the system while it operated in
a time-shared mode. These modifications have significantly improved
system performance and reliability. In addition, analyses of limitations
inherent in the original design have led to work that is of current' priority
in 1969-70.

To fully understand the current system and its strengths and weak-
nesses, it is necessary to understand its origins and the intentions of the
original designers. First, it must be remembered that the system was
designed in 1964 when time-sharing systems were just beginning to be de-
signed elsewhere. Second, and more important, the designers of the sys-
tem had acquired most of their experience in the area of process control

Ronald Ragsdale. The LR DC 's Computer-Assisted Laboratory, DECUS
Proceedings, February, 1966, 5, 65-68.

iv

systems. Since the computer requirements of an on-line laboratory are
not unlike the requirements of many process control applications, this
experience seemed quite relevant. As a result, the system was designed
both internally and externally much like an early process control system.

Responsiveness is amajor consideration in the design of any pro-
cess control system. The need to be highly responsive generally precludes
swapping since the delays that inevitably occur in a swapping system sim-
ply cannot be tolerated. Because of this concern, the LRDC system a-
voided swapping and was designed to execute reentrant programs. In

addition, the system was designed to be "event driven" and depended upon
external events in the form of hardware interrupts to drive the scheduler.
It was felt that this particular design philosophy would ensure that the sys-
tem would be highly responsive to external demands for service. When

the LRD C system is operating, all jobs in the system are initiated and
controlled from a single operator's console, rather than from the user
terminals as is customary in general-purpose time-sharing systems. This
is again a characteristic of process control systems since such systems
interact with machines, not individuals.

It might seem that this system would be ideal for an on-line lab-
oratory environment; however, in spite of its many attractive features,
the system cannot be considered to be wholly successful in terms of the
requirements we aspire to. In process control applications, a package
of programs is developed and becomes semi-permanent, and care is taken
to ensure that no one program abuses the freedoms of the system. Once
a full complement of programs has been developed for a particular appli-
cation, new programs are added infrequently, and the system tends to
stabilize. In an active, on-line laboratory, however, programs are in all
stages of development, and new programs are added regularly to the job
mix. The researcher's primary interest is in the rapid development and

checkout of a new program, followed by its smooth operation along with
ample computer time to conduct the particular piece of research. It is
in these areas, however, that the current LRDC system falls short.
In particular, since the primary design goal of the system was on exten-
sive capabilities rather than on ease of programming, prograM develop-
ment time is typically lengthy, even with skilled programmers. All pro-
grams must be written in assembly language to meet the reentrant code
requirements of the system, and must interface with a complex input/
output structure. Only one program can be debugged at a time, and be-
cause the entire operation of the system is centered about a single oper-
ator's console, debugging cannot occur while other programs are oper-
ating. In addition, programs must be subjected to an unusually thorough
and lengthy checkout procedure before they reach production since the
system is unprotected, and an error in any, one program can induce a
systems crash.

In late 1969 a decision was made to begin the development of a
new time-sharing system based on an entirely different design philosophy.
This system has come to be known as the LRDC Experimental Time-
Sharing System (ETSS) and is currently undergoing implementation. ETSS

is a general-purpose, multi-language, time-sharing system designed to
operate on a small- to medium-scale computer equipped with a fast swap-
ping disk. ETSS has been designed to support flexibly a wide variety of
real-time applications ranging from highly interactive terminal-oriented
tasks to on-line laboratory experimentation where close control of non-
standard devices is required. Ease of programming and program debug-
ging has been stressed. New programs may be debugged while other pro-
duction programs are operating which should serve to relieve the serious
debugging bottleneck that has developed with increased use.

vi

ETSS consists of three main logical units, the MONITOR, the
EXECUTIVE, and a number of SUB-SYSTEMS. The EXECUTIVE is

the heart of the time-sharing system and performs two major functions.
First, it is responsible for the allocation and control of all systems re-
sources including input/output channels, memory, computation time,
and space on auxiliary storage devices. Second, the EXECUTIVE pro-
vides a set of services to programs operating under its control. By

masking hardware idiosyncrasies, the EXECUTIVE enables the user to
interface with a "virtual" software machine which embodies abstractions
such as "files and records" and which is far more user-oriented than the
underlying hardware. Programs running under the control of the EXECU-
TIVE are referred to as "tasks," which are discrete units of work to be
performed by the system. A task might be a program written by a user
at a terminal or a system program that is invoked by the EXECUTIVE
itself to provide a required service or function.

The MONITOR is the second main logical unit in ETSS and serves

as a software interface between the user at a terminal and the EXECU-
TIVE. Through the MONITOR COMMAND LANGUAGE (MCL), the user

gains access to the system (LOGIN), acquires peripherals (ASSIGN), ma-
nipulates permanent files and file directories (CATALOG, RENAME,

DELETE, DIRECTORY, FILES, LIBRARY), communicates with the op-
erator (TALK), requests system news and time (NEWS, TIME), calls
ETSS SUB-SYSTEMS (EDITOR, ASSEMBLER, FORTRAN, LOADER,

DMS, DEBUG, FOCAL, BASIC T64), and returns facilities to the sys-
tem when the job is finished (DEASSIGN, LOGOUT). Both the MONITOR

and the EXECUTIVE reside in a protected portion of memory termed
SYSPACE.

SUB-SYSTEMS, the third component of ETSS, as well as user
programs, reside in the remaining portion of memory called USPACE.

vii

USPACE is partitioned by the EXECUTIVE among users and is swapped

to and from a high-speed disk or drum when required. As part of the
overall ETSS design philosophy, the core-resident MONITOR provides
only a limited set of well-defined services, and most processing occurs
in a SUB-SYSTEM located in USPACE. Although overhead is increased
since multiple copies of the same SUB-SYSTEM must be swapped, the

MONITOR and EXECUTIVE are kept small in size, leaving a maximum

amount of memory for user programs -- A description of this new sys-
tem and a user manual is in preparation and will be available in late
July, 1970.

Robert Glaser
Director, LRDC

Robert Fitzhugh

Director, Computer Support Facility

May, 1970

viii

TABLE OF CONTENTS

Foreword iii

Introduction 1

System Hardware 5

Main Frame 5

Input /Output Devices 15

Subject Terminals 17

System Software 26

Central Executive 26

Operator Control and Error Detection 41

Peripheral Equipment Control 44

Utility Programs 58

Higher Level Languages 60

Documentation 63

Physical Plant 65

Personnel 67

Experimental Control Programs 72

Angle Discrimination 73

Sum and Recall 75

PALL I 77

PALL II, III 79

PALL IV 81

ix

TAP II 83

Letter Discrimination 86

Preferences 88

Digit Memory Span 91

Object Memory Span 92

Logical Classification and Concepts of Relationship . . 93

Simple Spelling 98

On Developing a Computer Laboratory 100

Installation and Development 102

Personnel and Management 107

References 114

Appendix A: Index of Computer Facility Documentation 120

Appendix B: Outline for the Documentation. of 'Sy3tem's Programs 125

THE DEVELOPMENT OF AN ON-LINE LABORATORY

FOR CAI AND BEHAVIORAL RESEARCH (1964-1968)

Wilson A. Judd

Learning Research and Development Center

University of Pittsburgh

INTRODUCTION

Research in the area of Computer - Assisted. Instruction (CAI)
has been and will continue to be one of the major programs of research
of the Learning Research and Development Center. Over the past four
years, the Center has developed a Computer Facility to support this
program. This Facility has had two major objectives: (1) to provide

the equipment and services necessary to support the research and de-
velopment efforts of the Center's experimental psychologists and others
working in the area of the educational technology, and (2) to conduct a re-
search and development program in the area of CAI systems and terminal
design. The interaction of these two objectives and the research orien-
tation of the Center staff has resulted in the creation of a Computer Fa-
cility that might be viewed as lying midway between a CAI installation
and a computer-based laboratory for behavioral science research.

Since one purpose of the CAI program was to explore the char-
acteristics of a desirable CAI system, the system itself was built up
from basic components rather than being installed as a complete unit.
The Characteristics of student terminals suitable for CAI was a matter
of particular interest (Glaser, Ramage, and Lipson, 1964), and conse-
quently, a very flexible system, incorporating a variety of terminal

devices, was developed. The LRDC Facility is quite small in compar-
ison with most existing CAI installations, and the system itself was
not intended to support a full-scale CAI production effort. Rather,

the emphasis has been on supporting the development of small-scope
CAI programs designed for the purpose of evaluating specific instruc-
tional strategies and investigating the behavioral charaCteristics of stu-
dents in a CAI environment. In addition, the Facility has proven to
be quite useful for the control of psychological experimentation, some
but not all of which has derived from questions raised by the CAI de-
velopment effort. Since it appears that the emphasis of the LRDC
C.A I program may shift toward CAI production on a broader scale in
the near future'and becanie of the author's particular orientation, this
report will view and attempt to describe the LRDC Computer-Facility
as a CompUter-based PsycholOgiCal laboratory With a particular orien-

tation toward research problems related 'to C Al .

How can a computer system such as the LRDC Facility be used
in behavioral experimentation? First, the system can be used for
stimulus presentation. Alpha-numeric and some limited graphic ma-

,

terials can be presented by means of cathode-ray tube (CRT) displays.
More complex visual displays can be presented by slide projectors
under computer control. Audio messages can be presented by means
of "randomly accessible" tape recordings. Any other display devices
that can be controlled by a limited amount of relay logic can be computer-
controlled with a minimum amount of effort. The advantages of corn-
pu.ter-controlled stimulus presentation are very accurate' timing and con-
trol and, when it is deairable, the capacity for compleX,I response-de-
pendent' sequencing of stimuli. Under some conditions, the stimuli are
also easily modified by the experimenter or they may be generated al-

.gorithmically.

Secondly, the system may be used advantageously for response
processing. In addition to the usual multiple-choice pushbuttons used
in mechanized human experimentation, the subject can make constructed
responses by means of a typewriter keyboard. The use of photographic
stimuli projected onto a touch-sensitive surface developed at LRDC has
proven to be valuable for working with young children. Again, the sys-
tem provides very accurate response timing, and the ability to handle
high response rates and to process complex responses such as typed
words and sentences.

A third area of interest is the system's capacity for record
keeping and data display. Response data stored in the system may be
permanently recorded on paper tape, magnetic tape and punched cards- -

all record forms that are amenable to computerized statistical treatment
without additional manual operations. The system itself is not suitable
for running extensive statistical programs, but it is quite capable of
limited data reduction and summation and can provide the experimenter
with displays of his data very soon after the completion of an experi-
mental run. It would be feasible to provide the experimenter with a
running summary of the data on a teletype or CRT while the experiment

is in progress, although this feature has not been utilized.

A most interesting aspect of computer control is the ability of
the system to make rapid, sophisticated decisions concerning stimulus
presentation based on the pattern of subject responses. Reinforcement
can be made contingent on a complex pattern of responses that might be
scattered over a long period of time. In paired-associate learning and
concept formation tasks, lists can be manipulated and items can be intro-
duced, dropped and re-introduced as a function of algorithms determined
by the experimenter and by the subject's sequence of responses. When

children are used as subjects, it has been found useful to note, but other-

3

wise ignore, certain irrelevant responses and to repeat pertinent in-
structions, whenever they are required throughout the task.

It is hoped that this report may prove to be of value to psycho-
logists and educational researchers who are interested in the promises
and problems of on-line control for behavioral experimentation. The

hardware and software aspects of the system itself are described in de-
tail; the intention is to present one example of an on-line control facil-
ity. While the system has proven to be relatively satisfactory, it is
far from ideal. Were we to begin designing another system today, sub-
stantial changes would be made. Hopefully, the system description, as
well as the sections concerning documentation procedures, the physical
plant, and facility personnel will provide the interested experimenter
with some feeling for the various aspects and scope of the design, con-
struction, and maintenance of such a system.

A number of experiments which have been run under the control
of the system are described in hopes of demonstrating some of the ad-
vantages of on-line experimental control and, perhaps of stimulating
the reader's interest in the possibilities of "contingent experimentation."
Finally, an attempt has been made to summarize some of the knowledge,
experience, and folklore generated by four years of constructing, using,
and living with a laboratory computer system.

4

System Hardware

Main Frame

All laboratory equipment control is provided by two Digital
Equipment Corporation computers, a PDP-7 and a PDP-9. These

two machines are highly program compatible, differing only in speed
(cycle time is 1.75 microseconds for the PDP-7 and 1.0 microseconds
for the PDP-9), the use of the memory-indexing registers, and some
minor input/output (I/O) conventions. The PDP-9 has been interfaced
to the PDP-7 in such a way that it can be used independently or as addi-
tional core storage for the PDP-7. The interface between the two ma-

chines is discussed in detail below.

The PDP-7, the first machine installed in the laboratory, can be
viewed as the basic control device. As such, it has a relatively large
number of options and I/O features. Some of these were installed by
Digital Equipment Corporation at the time of purchase. Others have

been added by the LRDC staff as required by the expansion and develop-
ment of the system. Core memory in the PDP-7 consists of 16K (K=1024)
or 16,384 eighteen-bit words, divided into two 8K fields. Normally, a
program may address only those locations within its own field. Data

transfers and program jumps across field boundaries are accomplished
by directly addressed instructions while in the memory extension mode.

It would seem worthwhile to pause here for further explanation.
The instruction LAC X will load the contents of location X into the ac-
culator (AC). The instruction LAC I X (load indirect X) will use the
contents of location X as the effective address fiom which to load. Thus,

if location X contains the number Y, the instruction LAC I X will load the
contents of location Y into the AC. Likewise, again assuming that location
X contains the number Y, the jump instruction JMP I X will cause program

5

control to be transferred to location Y. If the machine is not in the
extended memory mode when an indirect instruction (or any instruction,

for that matter) is executed, only the last 13 bits of the address are con-
sidered. Since 213 = 8,192, this is sufficient to address any location
in a single 8K field. If the, extended memory mode is in effect, the ad-
dress is treated as consisting of 15 bits but only for an indirectly ad-
dressed instruction. Thus, a total of 32,768 locations are accessible
under this addressing structure, but some degree of protection between
fields is provided by the requirement that transfers across field bound-
aries take place only by indirect addressing while in the memory exten-
sion mode. Memory extension mode itself is under program control.

A standard PDP-7 feature related to indirect addressing is the
autoindexers. Locations 10 through 17 in each of the two 8K fields in
the PDP-7 are specified as autoindexers. When these locations are ad-
dressed by normal, i, e. , not indirect, instructions, they behave as any other
location. However, when they are addressed by an indirect instruction,
e.g., LAC I 10, the contents of the autoindexer word are incremented
by one and the new value is used as the effective address for the instruc-
tion. Thus a loop containing a LAC I 10 instruction, where location 10

contains the value 100, would systematically load the contents of succes-
sive locations starting with location 101.

One 'u.ndor- supplied option is the Extended Arithmetic Element
(EAE).. This consists of an 18-bit multiplier quotient register (MQ),
a six-bit step counter register (SC), two sign registers, and the EAE
control logic. The EAE's purpose, in addition to providing an addi-
tional register, the MQ, for data transfer between routines is to facil-
itate high- speed multiplication, division, shifting, and bit manipulation.

Since the primary purpose of a computer in a behavioral science
laboratory is equipment control rather than numerical processing per se,

6

its I/ 0 capabilities are of prime importance. The PDP-7, being de-
signed as a process control machine, is fairly well suited for such an
application. All system i / 0 is handled by some combination of the fol-
lowing devices: Information Collector, Information Distributor, Device
Selector, Automatic Priority Interrupt System and Multiplexor.

Information transmission and device control. The Information

Collector (IC) reads data from a specified buffer into the AC or MQ
whenever a particular input-output transfer (I / 0 T) instruction is exe-
cuted. Likewise, the Information Distributor (ID) loads a specified
buffer with the contents of the AC when a particular I / 0 T instruction
is executed. The Device Selector (DS) decodes each I / 0 T to determine
which device buffer should be loaded into or from the AC. Six bits in
each I / 0 T instruction are used to specify the type of I / 0 device. This

means that the I / 0 T structure can handle up to 26 or 64 different types
of devices. If there is only one device of a particular type, then only
one buffer is associated with this device type. In some instances, e. g. ,
the case of subject terminals, there are several I / 0 devices of a partic-
ular type, each with its own input and output buffer. For this purpose,
there are four sub-device selection bits available in each I/ 0 T instruc-
tion. Thus, up to 16 input or output devices of any one type can be han-
dled by the I / 0 T structure. Currently, the L R D C system has 28 input
device channels to the AC and seven device channels to the MQ. Data

transmitted to all subject terminal displays, to the paper tape punch, and
to the teletype printers are transmitted via the accumulator and the Infor-
mation Distributor. The Information Collector handles all data from sub-
ject terminal inputs, teletype keyboards, the card reader, and the paper
tape reader.

Automatic Priority Interrupt System. Since the peripheral I / 0
devices are, as a rule, much slower than the Central Processing Unit
(C P U), it would be extremely inefficient to make the C PU wait until

the peripheral device is ready to transmit or receive its next piece of

information. This is particularly true if the data input rate is depen-
dent on human response times, as is the case of the computer used in
the behavioral science laboratory. This mismatch in processing speed
is the basis for the time-sharing system. While the system is waiting
for input from one device, it can proceed with other activities such as
numerical processing, or transmitting data to or from another I/O de-
vice. There must be some means, however, of notifying the CPU when
a device is ready to transmit or receive data. For the PDP-7, this
function is fulfilled by Automatic Priority Interrupt System (API).

When an I/O device is ready to transmit or receive data, it acti-
vates its assigned API channel. This action interrupts the ongoing pro-
gram by causing program control to be transferred tc a specific loca-
tion in core. In the PDP-7, there are 1610 API channels for which the
corresponding core memory locations are 408 to 578. Instructions
stored in these locations then cause control to be transferred to a rou-
tine appropriate for controlling the relevant I/O device. When the equip-

ment control routine has completed its necessary function, program con-
trol is returned to the original program by the software time-sharing
system. It is obvious that a problem would arise if two or more inter-
rupts were allowed to occur simultaneously. This is prevented by the
interrupt priority scheme. All the interrupt channels are ranked on a
priority basis with channel 0 (location 408) having the highest priority
and channel 17

8
(location 578) having the lowest priority. When a "break"

occurs on a particular channel, that is, when that channel is activated by
an I/O device, all lower channels are, in effect, turned off. The inter -
rupts are not lost, but they are prevented from interrupting the ongoing

program until a "debreak" command is issued. Breaks on higher priority
channels are allowed to interrupt routine processing the previous inter-
rupt. If a particular type of I/O device requires immediate service or

if it is of crucial importance to the operation of the system, it is as-
signed to a high priority channel. Devices which can tolerate some
delay in their rate of data transfer are assigned to relatively low pri-
ority channels.

The current API channel device assignments are given below.
The different devices mentioned will be discussed in greater detail in
subsequent sections.

Channel 0 is assigned to the Control Teletype. While

the Control Teletype does not require fast service for its
data transfers, it is desirable that it be the device least
susceptible to being blocked out the API so that it can
be used to restart the system in case of a crash.

Channel 1 is currently not in use but is tentatively re-
served for the use of an eye-movement camera, a device with
an extremely high data rate.

Channel 2 services the Touch Sensitive Surfaces, a set
of subject response devices which have no external buffering

and consequently require very fast service.

Channel 3 is assigned to a two-millisecond clock used for
placing time limits on subject responses.

Channel 4 is currently unassigned.

Channel 5 is used to detect status signals from the mag-
netic disc such as "ready to start data transmission" and "data
transmission complete".

Channel 6 is used to detect similar status signals from
the PDP- 9 computer.

Channel 7 detects status signals generated by the mag-
netic tape controller.

Channel 108 services a variety of devices falling in the
general category of in-house I/O such as the Paper Tape Reader
and Punch, Card Reader, and in-house teletypes.

Channel 118 is used to detect the presence of status signals
from the Dataphones, used to control the operation of remote
teletypes over telephone lines.

Channel 128 services the random-access audio units.
These are relatively slow devices and can, therefore, tolerate
relatively long data transmission delays.

Channel 138 is currently unassigned.

Channel 148 services the keyboards used for subject re-
sponses. Data from a keyboard is saved in an external buffer
and is not destroyed until the keyboard is reset by the control
program. Therefore, these devices can tolerate indefinitely
long delaYs before transmitting data.

Channel 158 is currently unassigned.

Channel 16
8

detects status word transmissions from the
Random Access Slide Projectors. Again, the data, to be trans-

mitted can be saved indefinitely in an external buffer.

Channel 178 is used by the Time-Sharing System software.
Since Channel 17 has the lowest priority, an interrupt on this
channel will not be recognized until all interrupts on the higher
priority channels have been serviced. The system software
uses this relationship to determine the time at which normal pro-
cessing should be resumed.

10

Multiplexor. While the I C and ID provide convenient and flex-

ible means of transmitting data to and from a variety of devices, the
requirement that data first be loaded into the A C or M Q is restrictive
and time-consuming when large amounts of data must be transmitted.
A multiplexor allows bulk data to be transmitted directly between an
I / 0 device and core memory without passing through the A C. Con-

trol commands to the I / 0 device and information about the data, e. g. ,
the core address of the data or the amount of data to be transferred, are
transmitted via the A C and the I C or I D. The data transfer, itself, is
done on a cycle-stealing basis. That is, while the CPU continues to run
an ongoing program, some cycles are used for transferring data. The

"stolen" cycles have no effect on the ongoing program other than its
running at less than its normal speed.

The multiplexor consists of eight bi-directional channels. Four

of these are currently implemented servicing the disc, the magnetic tape
controller, the line printer, and a clock. Normally, the multiplexor unit
checks one channel during each machine cycle on a round-robin basis.
When an I' /0 device is ready to transmit or receive data, it issues a
data break request on its assigned channel. When that channel is queried,
one eighteen-bit word is transferred to or from core. Since all eight chan-
nels must be monitored, the maximum data transfer rate for any one chan-
nel is 71, 000 words per second. The magnetic disc, however, requires
a transfer rate of about 108, 000 words per second. Currently, this prob-
lem is overcome by locking out the other seven channels while a disc trans-
fer is in progress. In the near future, a more sophisticated priority sys-
tem will be installed which eliminates the undesirable lockout procedure.

Timing. Accurate timing is of considerable importance in a lab-
(ratory computer system. In general, the user has two types of interests
in timing during an experiment. First, he may wish to control the length

11

of time that the stimulus is displayed, the inter-item interval, or the
time allowed for the subject to respond. Secondly, he may wish to mea-
sure response latencies. The LRD C System has two clocks to serve
these functions. The first is a two-millisecond clock for controlling
time delays. Although the clock is accurate to 2 msec., time delays
are requested in 10 msec. units as a matter of convenience. This is

essentially an alarm clock. For example, a program might display a
stimulus and then request that it be notified when a certain length of
time has expired. The clock is set to a negative number corresponding
to the length, of the time delay. When the clock count reaches zero, it
causes an interrupt on API Channel 3. The system software then de-
termines which program is waiting for that particular time delay and
notifies it that the delay has expired.

A second, 1 msec., T.t.eck is used to measure response latencies.
This clock, called the Time-of-Day Clock, is an external 36-bit buffer
which is simply incremented once every msec. I /.0 T instructions en-
able the user to read the contents of the clock buffer into the A C and M Q.
In practice, the clock is automatically read by all of the system routines
which control devices at the subject terminals. This assures that the
clock reading is taken within a msec. of the time at which the stimulus
display was completed or at which the subject made his response. These
times are saved and are available to the user program on request.

Additional device control features. Some subject terminal de-
vices such as the teletypes and keyboards are controlled directly by the
I / 0 T instructions while others are driven by relay logic. The P DP-7
has four general purpose relay buffers, each containing 18 bits or 18
single-pole, single throw relays. A system relay control routine allows
a user program to set or reset any particular relay or group of relays.
Since the relays are mechanical devices, they are relatively slow, re-

12

quiring about 5 msec. to settle. Consequently, the relays themselves
are systematically being replaced with solid state logic. Currently,

two buffers are used to control the Random Access Audio units. A new
audio system will be controlled by a separate set of solid-state buffers.
Fifteen relays (or their solid state equivalents) are employed in the con-
trol of the slide projectors and cathode-ray tube displays. The remain-
ing 21 relays, 55 following the installation of the new audio system, are
available for controlling srscial devices, such as lights or buzzers, re-
quested by the experimenters.

Finally, a two-channel digital-to-analog (D/ A) converter is used
for vector control on the CR T displays, one channel for the X-coordi-
nate and the other for the Y-coordinate. Both D /A channels can be
switched rap'ily from one CR T to another via the solid state logic dis-
cussed above. This allows dific.rent displays to be presented on several
CR T's without apparent delays. The system is also equipped with an
A / D or analog-to-digital converter but thus far, no experiments have
been requested which would require this feature.

The PD P -7 / P DI? -9 interface. During the laboratory's
third year of operation, it became obvious that an additional 16K of core
memory would be advisable. Due to a series of difficulties and delays
in the ordering and delisery of the additional core, the possibility of
using a 16K PD P -9 computer to fulfill the extra core requirements
was investigated. The P DP -9 was a newer Digital Equipment Corpor-
ation product, highly compatible with the P D P -7 and essentially a newer
model of it. Analysis of the problem of interfacing the two machines in-
dicated that such a solution to the core problem was feasible. Due to ad-
vances in the state-of-the-art of computer construction, it was possible
to purchase a stripped-down version of a PDP -9 for $11,000 less than
the cost of 16K of additional core for the P DP -7. When the cost of in-

13

terfacing the two machines is taken into account, the net savings
were 56,000.

The P DP -7 to -9 interface has three modes of operation which
are selected by a manual switch. The first is a stand-alone mode, with
the PDP -7 and P D P -9 running as two separate machines. As was

mentioned above, the P DP -9 was purchased as a stripped machine.
Since the PDP -9 installation, an E A E unit has been constructed and
installed in the -9, thus increasing the number of instructions to a set
that is essentially equivalent to that of the PDP -7. Although it is rela-

tively rare, situations do arise in which it is economical to run different
programs on each of the two machines.

The second, and most commonly used, mode is the extended-
core mode. In this case, the PD P -9's CPU is idle and its memory is
used as the upper 16K of the PD P -7. In this mode, the PD P -7 has a
cycle time of 1.75 microseconds when accessing its own core and 2.25
microseconds when accessing the P D P -9's core. This is the mode of

operation for the time-sharing system. As the system is presently de-
signed, the system itself, the Executive, reskles in the P DP -7 while
user programs being run reside in the P DP -9.

The third mode of operation is the multiple-processor mode in
which the CPU's of both machines are active, the P DP -9 in its memory
and the P DP -7 in both its own and the -9's memory. It will be recalled
that while the PDP -7 has a basic cycle time of 1.75 microseconds, the
newer PDP -9 has a 1.00-microsecond cycle time. The difference be-
tween these cycle times is accommodated by splitting the read-write
memory cycle during a PDP -7 access in P DP -9 core. Consequently,

the -9 loses 1.6 microseconds when the P DP -7 accesses -9 core. The

P DP -7 operates with a 1.75-microsecond cycle time when accessing
its own core and a 3.65-microsecond cycle time when accessing the

14

PDP -9 memory. This mode is used primarily for running PDP -9
vendor-supplied software, such as FORTRAN and the PDP -9 MACRO

Assembler,, which requires the use of I / 0 equipment controlled by
the P D P -7.

Input-Output Devices

The 32K words of core storage descrt'.-ed above are supplemented
by a 640, 000 word magnetic disc. This is a 6 -rroughs model 9370 High
Speed System memory with fixed heads and 100 tracks on each side of
the disc. Each track is divided into 100 segments and each segment is
divided into 100 eight-bit bytes. The disc is addressed in binary coded
decimal and in either byte or word mode. A single segment can contain
5010 PDP -7 words in byte mode or 3210 PDP -7 words in word mode.
The transfer rate, through the multiplexor, is 310,000 bytes per second
or 108, 000 words per second. Maximal access time is 34 msec.

Bulk storage is provided by a single Datamec D2020 tape drive.

This is a 7-channel unit which can read and write IBM compatible tape
at either 200 or 556 bits per inch. Tape speed is 45 inches per second.
The increased use of the laboratory facility has demonstrated that this
single drive is not sufficient for the requirements of the time-shared
system. During the second half of 1969, the current tape drive will be
replaced by four Texas Instruments Model 959 single capstan tape trans-
ports which will read and write a 556 or 800 bits per inch with a tape
speed of 120 inches per second.

In addition to magnetic tape, input to the system is provided by
punched cards and punched paper tape. The card reader is a pneumatic
pick, photoelectric-read unit manufactured by General Design, Inc. The

maximum read rate is 600 cards per minute. Currently, data input is
via the A C, but direct memory access capability will be provided shortly
by interfacing the reader via the multiplexor unit.

15

Both the P D P -7 and the P DP -9 are equipped with paper tape
readers. These are photoelectric-read devices which sense holes
punched in five-, seven-, and eight-channel punched paper tape. The

standard input medium is 8-channel, fan-fold paper tape, read at the
rate of 300 lines per second. Information can be read from the tape in
either alpha-numeric or binary mode. In alpha-numeric mode, each
eight-bit line of tape corresponds to one ASCII (American Standard
Code for Information Interchange) character. In binary mode, six-bits
from each of the three successive lines are read to compose one 18-bit
binary word. Data transfer is via the A C.

Data output from the system is recorded by punched paper tape
and a line printer. In some cases, data are recorded on magnetic tape
for subsequent statistical processing by the University IBM 7090 or
360 computer systems. It is anticipated that a card punch will be in-
stalled during late 1969. Both the P DP -7 and P D P -9 have paper tape
punches which punch either ASCII, or binary code at the rate of about 63
lines per second. Data transfer to the punch is via the A C. Although

paper tape is 'a somewhat difficult material to work with (tapes tend to
be too large and wear out rapidly with use) the reliability and flexibility
of the paper tape reader and punch has made paper tape the system's
most popular medium for both programs and data. It is anticipated that
the use of paper tape will decrease with the installation of the expanded
magnetic tape system and the card punch.

Hard copy listings of programs and data is provided by a Porter
HS P - 3502 Medium Speed Chain Printer. This device has a character
set of 96 characters (numerals, upper and lower case letters, and spe-
cial characters) and prints at the rate of 200 lines per minute, each line
consisting of 132 character positions.' Data are supplied to the printer
from the CPU via the multiplexor unit.

16

Operator interaction with the system is provided by the con-
sole switches on the P D P -7 and P D P -9 and by three teletypes. The

P DP-9 has one console teletype, used for the control and debugging
of programs, usually batch or utility function programs, run on the
P DP -9. The PDP -7 console teletype is the Control Teletype men-
tioned earlier which is assigned to API Channel Zero. An extensive
software p. kage allows the operator to control the time-sharing system
by means of this device. The second P DP -7 teletype is treated as a
standard I / 0 device and is assigned to API Channel 10. This teletype
is primarily for program debugging purposes. It is normally used by
a programmer to control a debugging utility program. Alternatively, this
device can be treated as a subject terminal teletype, thus allowing the
programmer to check the operation of his program without leaving the
computer room. All teletypes transmit data to and from the C PU via
the AC.

Subject Terminals

As was previously discussed, one major emphasis of the LRDC
CAI program has been the exploration of the student/subject matter in-
terface and the development of student station devices for CAI. (Glaser,
Ramage, & Lipson, 1964; Glaser & Ramage, 1967) Consequently, a
fairly wide variety of subject terminals is available to the experimenter.

Teletypes. The simplest terminal is a standard KS R - 33 Tele-
type. Currently, one teletype is in use as a student terminal and a sec-
ond is being used as a teacher terminal in conjunction with another stu-
dent station. These devices are additional to the previously discussed
console and debugging teletypes in the computer room itself. Ten more

teletypes are on order and will be installed during the spring of 1970.
As a subject terminal, the teletype is noisy, fairly inflexible in its for-
mat, and slow, printing at a maximum rate of ten characters per second.

17

It does, however, have the advantage of being quite reliable and rela-
tively inexpensive.

Many of the disadvantages of the standard teletypes can be alle-
viated by replacing the teleprinter unit with a cathode-ray tube (C RT).
The L R D C laboratory has two such terminals composed of teletype
keyboards and Tektronix CR T s. While these two devices are usually
used together in a single terminal, either may be used separately as a
component of some other station.

Keyboards. The keyboards currently in use are standard tele-
type keyboards which have been modified slightly so as to require an
unlock command from the computer and to provide a parity bit. Char-

acters typed by the subject are transmitted to the computer one char-
acter at a time. The keyboard is automatically locked following each

key strike and must be unlocked by a command from the computer. A
light on the keyboard in parallel with the unlocking mechanism indicates
when the keyboard is activated. Such a procedure might be considered
to place an unnecessarily heavy load on the computer system, but it
does allow the experimenter's program to maintain very close control
over the subject's response behavior. With the system loadings expe-
rienced to date, the time required to unlock the keyboard is not notice-
able. There are, however, some disadvantages to the current key-
boards. Due to their modification, the keyboards produce a non-stan-
dard code, and this is now undesirable since all other devices in the
system use the standard' ASCII code. The keyboards are not as reliable
as might be desired and are noiser than newer keyboards. The keyboards
of several different manufacturers are currently being evaluated, and it
is anticipated that the teletype keyboards will be replaced shortly.

Cathode-ray tube displays. The original C R T displays installed
were Tektronix RM - 564 Storage Oscilloscopes. These devices, which are

18

rather bulky, have a three-by-four inch screen coated with a phospher
which will retain or store an image for several minutes without notice-
able deterioration. Thus, the computer program can display a stimulus
on the screen once and have it persist for as long as it is required with-
out the necessity of the display being constantly refreshed. When the
C R T is used in this fashion, in storage mode, the display must be sta-
tic; it is not possible to create a stored moving display. Additional
information can be added to a stored display, but the display cannot be
selectively erased. The entire screen must, be erased at once. Erasure
requires approximately one-fourth of a second.

The CR T can also be used in dynamic mode. In this case, the
display is not stored and must be constantly refreshed. This allows the
user to present a moving display and to erase or replace selectively in-
dividual portions of the display. The display itself is more legible than
a storage mode display since there is a fairly high level of background
illumination on the screen in storage mode. The problem with dynamic
mode displays, of course, is that a substantial amount of CPU time is
required to constantly refresh the display. Consequently, storage mode
is much, more widely used than dynamic mode, although dynamic mode

is available for situations which require highly interactive displays.
Three such CRTs are currently in use, one in a standard student sta-
tion and two in subject terminals constructed for a specific experiment.

In a second standard student station, the RM 564 'scope' has
been replaced by a Tektronix 601 Storage Display Unit. This' unit, which
was designed specifically as a terminal display, has all the features des-
cribed above but does not have several other features provided by a gen-
eral purpose oscilloscope such as the RM 564. Consequently, the 601

display unit is less than half the overall size of the RM 564 'scope'.
Both devices have the same screen size, but the 601 unit presents a

19

more legible display since the background illumination is less vari-
able than that of the RM 564.

A new student station under construction will incorporate yet a
third type of CRT display, a Tektronix 611 Storage Display Unit. This

device has a seven-by-nine inch display screen which incorporates a
"write-through" feature. That is, a dynamic display can be superim-
posed over a stored display. Thus, a complex display might be stored
on the CRT while a movable cursor indicates the location of the next
character to be typed. It is anticipated that the RM 564 displays cur-
rently being used in student terminals will be replaced by 611 Display
Units during late 1969.

All of the above units are driven by the same C R T control rou-
tine. Since the system does not include a character generator, alpha-
numeric characters are formed by the software by selecting the appro-
priate 'points to form the requested character from a five-by-seven point
matrix. This routine provides an experimental control program with
upper and lower case letters , the ten digits, subscripting capabilities
and a limited set of special characters. An experimental control pro-
gram may also define its own character set, such as the Cyrillic alpha-
bet, by providing a set of tables which define the appropriate points to
be selected from the basic 35-point matrix. A point-plot option in the
CR T control program allows the experimenter to create graphic dis-
plays beyond the limits of the 35-point matrix. This operation is quite
tedious, however, and has not been used extensively.. A line drawing
program has been developed for the 611 Display Unit and may be incor-
porated as a routine of the System C R T control program when more of
the 611 Units are operational.

Slide projectors. While the C R T units can provide fast and
flexible stimulus displays, the complexity of the displays is quite Um-

20

ited. Current C R T displays are incapable of presenting half-tone
or multicolored displays, and only the simplest line drawings are fea-
sible. All of these limitations can be overcome by displays generated
from film. The L RD C System uses 35 mm. slide projectors for this
purpose. Filmstrip projectors were rejected because of the difficulty
of altering the sequence of frames in the filmstrip.

The original projectors used were Kodak A V 900 projectors.
These devices were not designed for random access use and required
one second to skip each slide. Thus, if a subject's response to slide
10 required that slide 20 be shown next, there was a ten-second delay
before slide 20 was presented. The current projectors are the more
recently developed Kodak RA - 950 devices as modified by Mast Devel-
opment Corp. The RA - 950 can access any of its 80 slides within ap-
proximately 4 seconds. The minimum access time is still just under
one second. The only LR.D C modification was to place the shutter
under program control. The projectors are used in pairs allowing a
second slide to be superimposed on the first for purposes of providing
knowledge of results, etc.

Touch-sensitive surfaces. While the projectors can be incor-
porated into any experimental terminal, their most common use is in
conjunction with a Touch-Sensitive Surface. 'Zlis is a translucent
screen composed of a matrix of square touch-sensitive elements. When
a subject responds by touching some component of the slide projector
display, one of the touch-sensitive elements is activated and the pro-
gram is able to determine which area on the surface the subject touched
and, consequently, which aspect of the display was touched. The origi-
nal display, developed jointly by Westinghouse Electric Corporation and
L RD C, consists of a heavy sheet of plexiglas 18 inches square. This

surface is divided into a nine-by-nine matrix of two-inch squares, the

21

squares being separated by narrow ridges raised one-eighth of an inch
above the surface. These ridges hold a network of fine wires, spaced
one every third of an inch, just above the surface. The horizontal and
vertical wires are separated by 1/32 of an inch. The five wires cor-
responding to a particular row or column of the matrix are all tied to-
gether at the edge of the surface. A sheet of soft, flexible plastic cov-
ers the entire grid. When a subject presses anywhere on one of the
squares, one or more of the horizontal wires is pressed down onto one
or more of the vertical wires. In effect, this completes a switch clo-
sure which uniquely defines the square lying at the junction of row and
column activated.

This device, which was designed for.use with young children,
has proven to be quite successful. Two identical surfaces, each with
a pair of RA - 950 projectors, are currently in operation. There are
some drawbacks to the design discussed above. The ridges between
the squares create dead areas and, to some extent, interfere with the
slide projector display. There is a slight paralax problem since the
slide image is actually projected on the rear of the plexiglas surface.
The surface itself is larger than necessary and for most applications
it is masked off so that only the center 25 elements are exposed to the
subject.

The development of an improved Touch-Sensitive Surface has
been a major project of the LRD C engineering staff. Several different
approaches to the problem are currently in progress. A smaller screen,
based on the same wire to wire contact principle, has been constructed
and will be evaluated in conjunction with a new projector. Other alter-
natives under development will be discussed in a subsequent report
(Fitzhugh & Katsuki, in preparation).

22

Random-access audio. Since much of the laboratory's work
is conducted with small children, it is essential that some type of audio
presentation be available. Random access to audio is one of the most
pressing problems in the area of CAI terminals. Most of the units
available commercially use multi-channel magnetic tape recorders
which are, for the most part, far too slow for response-contingent au-
dio presentations. While there are some very fast access audio units
available, these are still very expensive. While the audio units em-
ployed by the LRDC laboratory have some serious deficiencies, they
appear to be one of the more feasible alternatives, given the current
state-of-the-art.

These units are the Westinghouse-designed CROWs (Computer

Random Oriented Words). The recording medium is a six-inch-wide
dictaphone belt containing 128 tracks. These tracks are accessed by a
bar containing 16 record/play heads. The bar itself may be placed in
any of eight different positions. The belt moves at the rate of three and
three-quarter inches per second. Thirty inch belts, containing eight
seconds of audio on each track, can provide up to 17 minutes of audio
messages. A photoelectric circuit detects holes punched in the edge
of the belt and divides each track into eight one-second segments. The

minimum addressable message length is, therefore, one second. Since
a single message may be continued from one track to another, the maxi-
mum message length is essentially 17 minutes. The units were designed
to have a rapid reverse feature, but this was found to be unreliable and
is no longer employed by the LRDC System. As a result, the CROWs
can have almost instant access to 128 messages, one of each track, and
access to all message units on the belt within a maximum of seven seconds.
While faster access would be desirable, it has been our experience that
delays may be kept to a tolerable level by the strategic placement of re-
dundant messages on each belt.

23

Two CROWs are installed in the system. For the most part,
one of the units has been available for use with subjects while the other
has been used by the engineering staff to install and test modifications
to improve the fidelity and reliability of the units. Currently, a battery
of six units, all modified, is being installed. .Although the CROWs were
designed so that each unit could be used by several subjects, the avail-
ability of a number of units makes it possible to assign a different unit
to each subject on the system. This keeps the access time within. rea-
sonable limits and has greatly reduced the required size and complexity
of the control routine.

Recording a CROW belt is a time-consuming process. To alle-

viate the demand for computer time, a Sony tape recorder was modified
to provide an off-line method of making recordings. The tape recorder
simulates the eight sector, 128 track format of the CROW belt. The

user records his messages' in the desired sectors en the recorder's
linear tape. At a later-time, the tape recorder is coupled to the system
and the recording is transferred to a CROW belt in 17 minutes. Subse-
quent editing of the belt is done on-line under the control of a special-
purpose CROW recording program.

Terminal flexibility. It shoiild be emphasized that all of the
devices discussed thus far may be used in any combina.tion. Although

the CR T and keyboard are used together in two of the student stations,
there is no reason why a keyboard 'could not be used in conjunction with
a slide projector. CR T displays are used in conjunction with a number
of different response devices, and audio can be included as a' supplement
to any subject terminal. The flexibility of the system is demonstrated
by the variety of special-purpose 'terminals constructed by various ex-
perimenters. The Touch-Sensitive Surface appears to the CPU as a
set of 81 momentary contact switches. Therefore, any response device

24

which uses momentary contact switches can serve as input to the Touch
Surface control routine. Any display which can be controlled by a rea-
sonable number of relays can be driven by the system with a minimum
of effort. One experiment, investigating response latencies, has used
a number of specially designed pushbutton keyboards in combination

with a CRT display. Another, concerned with discrimination learning
in very young children, has used a slide projector and a single element
touch sensitive screen. A variety of bells, lights, buzzers, and M & M
dispensers have been attached to terminals for specific experiments.

Remote terminals. In addition to in-house experimentation, the
system has the capability of conducting remote operations. Two data-
phone channels and two recorder coupler channels allow the operation
of terminals consisting of teletypes and audio at any location at which
two telephone lines are available. Program input to the dataphone con-
trol routines is identical to the input required by the in-house teletype
routines. Connecting the CROW audio units to the recorder coupler is
a simple patchboard operation. Therefore, programs which can be run
on local terminals consisting of teletype and audio can also be run at a
remote location.

25

System Software

Central Executive

The original design of the LR D C time-sharing system was
provided by Arthur Kaupe (1,966) of Westinghouse Electric Corporation.

The initial programming of the scheduling and memory management
routines was done under his supervision at the Westinghouse Research
Laboratories and was documented by Bright (1965).

Jobs and job vcheduling. The basic operational unit in the
LR DC time-sharing system is a "job." In the most general instance,
a job corresponds to the line of code controlling the terminal being used
by a single student or subject. In this case, the subject is assigned a
particular job number when he is sign.ed onto the system and is identi-

,fied by this job number throughout his use of the system for that partic-
ular session. In other instances, a job may correspond to a Clata-reduc-
tion program being run on the system or may even consist of a shori
equipment-cont-ol routine called by the system for a particular function
which cannot be handled under the auspices of a subject's job. The crit-
ical aspect of the job concept is that only one job can be running at any
one time. All other jobs in the system are either queued, waiting for
an opportunity to run, or are suspended, waiting for the occurrence of
some particular event.

Let us first consider the conditions under which a job is suspended.
Since experimental control and CAI programs require relatively little
processing time as compared with the time required for a subject to re-
spond, a job is usually allowed to complete the processing necessary to
evaluate and store the data from the subject's last response and to pre-
sent the next stimulus. A job is never allowed to run while waiting for
a subject's response. In all, there are six conditions under which a job

26

may be suspended. Suspension is mandatory under the first two of
these conditions. (1) Whenever a job requests a subject response (by
activating the subject's response device), it is automatically suspended
by the device control routine. The job will not be set up, that is, made
ready-to-run, until the subject makes a response. (2) A job may request
a time delay, that is, it may request that it be notified when a certain pe-
riod of time has expired. As in the case of a response request, the time-
delay routine automatically suspends the job until the expiration of the time
delay. Time delays are often requesteu in conjunction with some other
event. For example, it might be desirable to place a time limit on the
subject's response. In this case, the job requests a subject response or
a time delay in its call on the response device control routine. The job

is then automatically suspended for both of these reasons and will not be
set up until a subject response is made or until the requested time delay
has expired.

(3) The third suspension condition is voluntary. Some of the stim-
ulus display devices, such as the slide projectors and random-access audio
units require relatively long periods of time to present the requested stim-
ulus. Consequently, the control routines for these devices provide options
for suspending the job requesting the stimulus. Normally, a job will ask
to be suspended until the requested stimulus has been displayed but in
some instances a job may wish to start the stimulus device moving toward
the requested stimulus and then do additional processing or request addi-
tional displays from a second stimulus display device. For example, a
job might request that a particular slide be positioned but not shown and
then, while the slide is being positioned, the job might request that an au-
dio message be played. Similar options exist in the I/ 0 transfer routines.
If a job records data from subject responses in one specific buffer and then
requests that the filled buffers be written out onto disc, it would request
suspension until the disc transfer is completed so as to insure that all of

27

the relevant data have been copied onto disc before new data is written
into the buffer. If, on the other hand, a job records data from succes-
sive responses in a series of successive buffers, a second buffer may be
being filled before the first has been copied. In this case, a job could re-
quest disc transfers without suspensions and thereby avoid any delays due
to waiting for the completion of the disc transfer.

(4) The fourth suspension condition is required as a result of the
suspension options discussed above. Assume that a job requests that a
slide be positioned and does not request that it be suspended so that it
is free to do further processing while the slide is being positioned. The

job must now insure that the slide is in position before making other re-
quests such as a student response request. Under such conditions, the
job may request a suspension, via. System Routine WAIT (Judd, 1967),

until the completion of a previously requested event, in this case, the
positioning of a slide. The job will then be suspended until the slide is
in position. If the condition has already been satisfied at the time that
the request is made, job simply continues in the ready-to-run state.

(5) A job may also be suspended by the system itself. If the sys-
tem detects an error in a job's call on the system or an equipment mal-
function, the job is suspended by system routine SYSERR. (Buckwalter,
1966), and can only be restarted by the system operator. (6) Finally,
the system operator can suspend a job by means of the control teletype.
Again, under this suspension condition, the job can be restarted only by
the operator.

It is apparent that while any one job may be suspended most of
the time, there will be instances in which more than one job is ready to
run at a particular time. When a job is set up, that is, when the suspen-
sion conditions have been satisfied, it is queued. That is, it is placed
in the ready-to-run queue. Its position in the queue is determined by

28

its rank and the time at which it became ready-to-run. Each job in
the system is assigned a rank from one to seven, with one being the
highest rank. Higher-ranked jobs are always placed ahead of lower-
ranked jobs in the ready-to-run queue. Thus, a job controlling an ex-
periment and having real-time processing requirements, might be given
a rank of four while a data reduction program, with no real-time con-
straints, might be given a rank of five. If both jobs became ready to
run at the same time, the higher ranked experimental job would always
be placed first in the ready-to-run queue. Likewise, if the data reduc-
tion job were running when the experimental job became ready-to-run,
the higher ranked experimental job would be given control of the central
processor and the lower ranked data reduction job would be pushed back
into the ready-to-run queue. As a result, a higher ranked job need never
wait for a lower ranked job to run and, conversely, a lower ranked job
can never run if a higher ranked job is ready-to-run.

On occasion, a second experimental job is introduced into the sys-
tem which has the same rank as the first experimental job. The order of
jobs of equal rank in the ready-to-run queue is simply determined by which
job became ready-to-run first. If a job is running when a second job of

equal rank becomes ready-to-run, the first job retains control of the cen-
tral processor and new job is placed in the ready-to-run queue following
all other ready-to-run jobs of equal and ahead of any jobs of lower
rank.

If, at any particular time, there are no jobs which are ready-to-
run, control of the CPU reverts to System Job. Zero. Job Zero has the
lowest permissible rank, seven, and is the only job assigned this rank.
It never suspends but can be pushed back into the ready-to-run queue by
any other job which becomes ready to run. The primary purpose of Job
Zero is to keep the CPU in an active state while no other jobs are :-^ndv-

29

to-run. The minimum program required for this function is simply
a short counting routine, TWIDDL, which runs in a tight loop. Any pro-
gram which never requests a suspension, however, can be run as Job
Zero. Under normal operating conditions, the only other program run
as Job Zero is a utility routine DEBUG (Fitzhugh, 1969) which allows an
operator to examine or alter any location in the system. Job Zero is
switched back and forth between TWIDDL and DEBUG by means of the
Control Teletype.

Master tables. It is obvious from the above discussion that rela-
tively elaborate bookkeeping procedures are necessary to keep track of
the state of the system and to preserve the information relevant to each
of the various jobs. It is essential that none of the information with which
a job is working be disturbed during the time that it does not have control
of the C P U. If a job suspends, say for a subject response, it must be
restarted at the appropriate point, with access to the response data as
soon after the occurrence of the response as possible. When several
jobs become ready-to-run at approximately the same time, they must be
ordered so as to optimize the use of the central processor with respect
to the jobs' various ranks.

Th, heart of the bookkeeping system is the Job Status Table (JST).
When a job is introduced into the system by means of the Control Tele-
type, the system creates a JST for the new job and places the address of
the JST in a second table, the JST Directory. This directory is simply
a fixed length list of JST addresses ordered by job number. Thus the
address JSTDIR + 23 (the twenty-third location in the JST Directory) con-
tains the address of the JST for Job 23.

The JST itself consi,..ts of thirteen words, the functions of which
are as follows:

1. JSTSS -- The suspend status word. This is zero if

30

the job is running or ready-to-run. Otherwise, it contains
a number indicating why the job is suspended.

2. JSTRS -- The Request Status Word. This indicates
the status of any action which the Job has requested from a
peripheral device such as an I / 0 transfer, a stimulus display,
or a subject response. It will be recalled that a job may request
a suspension pending the completion of a previously requested
event. If the event has already occurred when the suspension
request is made, this will be indicated by the JSTRS word and
the job wilt. continue in the ready -to -run, state rather than being
suspended.

3. JSTRNK -- The Rank Word. This cell contains the
rank assigned.to the job by the operator when.the job was created.

4. JSTRNL -- The Rank-Link Word. It will be recalled
that jobs are ordered in a ready-to-run queue on the basis of
their assigned ranks and the time at which they became ready-
to-run. This cell contains the number of the job which is next,
that is, after this job, in the ready-to-run queue. Thus, the
ready-to-run queue is actually a linked list located in the vari-
ous jobs' JST's.

5. JSTPTC -- The Pointer-to-Core Word. When a job

loses control of the C P U, either involuntarily or through a sus-
pension, a large block of core, called COMMON, containing data
being used by the job is "swapped" from one location to another
by the system. When the job regains control of the CPU, the
block is swapped back to its original location. The JSTPTC word

contains the address at which the swapped block is stored while
the job is not running. COMMON is discussed in greater detail
below.

31

6. JSTIC -- Instruction Counter Word. This cell con-

tains the address at which the job is to be restarted when it
regains control of the CPU.

7. JSTMQ -- This cell contains the value which will be

in the Multiplier Quotient register when the job is restarted.

8. JSTAC -- This cell contains the value which will be
in the Accumulator when the job is restarted. If the job lost

control of the C P U involuntarily due to a higher-ranked job,
the JSTMQ and JSTAC contain the values in the M Q and A C

when the job lost control. If the job was voluntarily suspended
pending some external event, the JSTMQ and JSTAC may be used

to pass data to the job concerning this event.

9. JSTID -- Identification Word. This cell contains the
number, of the job.

10-12. JSTTD -- Time Delay Words. Three words used by

the system time-delay routine to be discussed below.

13. JSTCOM -- The Common Cell. This cell contains
the number of words of COMMON being used by the job.

As was mentioned previously, the system is designed ..to run time-
shared, re-enterent code, that is, two or more subjects may be run on
the same experiment at one time by a single control program. While a

single program can control the general course of the experiment, the data
from the various subjects must.be treated separately. In the simplest
case--a paced experiment in which all subjects are given the same exper-
imental treatment regardless of their responses--the data must, at least,
be recorded separately. At the other end of the continuum, one might
have a situation in which subjects were given different experimental treat-
ments, and were allowed to proceed at their own pace and in which specific

32

stimulus presentations were contingent on the responses of the individ-
ual subjects. In either case, it is desirable that the control program
have a specific location at whic'.!i it can expect to find a particular type
of data and that this be the data pertaining to or generated by the sub-
ject assigned to the currently running job.

This function is fulfilled by allowing each job to have access to
a block of core designated as COMMON space. In the current system
configuration, COMMON consists of the Autoindexers (locations 10 to
178) and locations ,400 to 7778 in each of the two fields available to ap-
plications programs. Whenever a job loses control of the CPU,
whether it suspends or is: queued, the System transfers the contents of
COMMON to a block of memory obtained from the free memory. held by

the system and records thelocation of stored block in the J.STPTC cell.
(This free memory, called MEMAL Space, will be discussed below.)
When-the job regains control of the CPU, the data :swapped out is re-
stored in COMMON. before the.: job' is restarted: Thus, an applications
program.being used by several different.jobs..to run several subjects
might. refer to .a location called ERRORS 'located in. COMMON space and

containing the number of incorrect responses which a subject has made
during the current trial. Whenever a particular job is running, loca-
tion ERRORS will contain the data pertaining to the subject being con-:
trolled by that job.

Since moving the contents of a large block of core is a fairly
time-consurning,process, it is desirable that no more data be moved
than is absolutely necessary for each job. Consequently, it is a system
requirement that each program specify how much COMMON it requires
before any data is stored in the COMMON area. This value is stored
in the JSTCOM cell of each job using the program and only the necessary
amount of core is swapped whenever that job is suspended or queued. The
Autoindexers are always considered to be included in COMMON.

33

This is only one of many possible schemes which might be em-
ployed in the implementation of time-shared code. One alternative is
to swap the entire control program. Since a control program is usually
much larger than the data which it requires for its operation for short
periods of time, this would be a much more time consuming process; but
it would have the advantage that it would not require the separation of
program and data which is a requirement of the system discussed above.
A common time-sharing practice is tc swap data (and/or programs) to
and from disc storage rather than simply to another part of core. This

has the advantage of reducing the amount of free core space required
and would allow a greater number of jobs to be run simultaneously, but
it would also substantially increase the time required for Swapping. An
earlier version of the LRD C system provided less than 1008 words of
COMMON as compared to the current 400

8
words. It was intended that

this small block, which could be swapped very quickly, would contain
primarily pointers to MEMAL space. Each job would obtain its own
MEMAL blocks for data specific to that job. This system proved to be
much too cumbersome since all data had to be accessed indirectly.

Scheduler. Having considered the bookkeeping aspects of the

syetem, We are now faced with the question of just how the various jobs
are scheduled. The Scheduler consists of three basic components:
SUSPEN, which is used to suspend a currently running job; SETUP,
used to make a suspended job ready-to-run and to place it in the ready-
to-run queue; and the re- scheduler (RESCH) which determines which
job is to have control of the C P U at any given time.

SUSPEN is called whenever the currently running job requests
a suspension by (1) requesting a time delay, (2) calling a response de-
vice control routine, (3) specifying a suspension option when calling an
I / 0 or stimulus device control routine, or (4) calling system routine

34

WAIT. Involuntary suspensions of a job by the system error routine
SYSERR and by the system operatoralso call SUSPEN. When called,

SUSPEN first checks for errors, in the call, and then saves the contents
of the A C and M Q in the JST if the caller requested that these registers
be saved. The location at which the job is to be restarted is saved in
the JSTIC word. The reason for the suspension, passed to SUSPEN as
a parameter, is checked against the Request Status' word in the JST to
determine whether the suspension condition has already been met. If

so, the job is queued via Routine RE8CH rather than being suspended.
If the reason, or one of the reasons, foi suspension is a time delay,
SUSPEN calls the Time Delay routine whiCh returns to SUSPEN when

the delay has been set up. Finally, SUSPEN determines which job is
next in the ready-to-run queue and calls RESC El* for the actual resched-

uling of jobs.

System routine SETUP 'may be called by any of the system rou-
tines which control devices for which a job may be suspended. When

7 ; ,

such a routine determines that suspension conditions h'ave been met for
a suspended job, the data required by the job are stored in a parameter
list accessible to the job, and the routine calls SETUP, passing it the
number of the job and a number specifying the reason the job was orig-
inally suspended. SETUP checks the data passed for errors and uses
the job's number to locate its JST. After determining that the job was
actually suspended for the condition reported by the calling routine,
SETUP determines whether one of the suspension reasons was a time
delay. If so, SETUP calls the. time delay routine to cancel the time de-
lay for this job.. It might be noted here that the System provides the cap-
ability of suspending for a tixne delay or some other event. The job is
set up in the event of the occurrence of the requested event or the expir-
ation of the time delay. There are no and suspension conditions avail-
able. That is. a job cannot be suspended until the occurrence of two

35.

specified events. This has not proven to be a limitation in the design
of experimental programs, since the and condition can be effectively
simulated by means of repeated calls on the system.

SETUP next checks the job's rank and determines where it
should be placed in the ready-to-run queue. If the currently running
job has a rank which is higher than or equal to that of the new job, the
new job is placed in the ready-to-run queue ahead of all lower ranked
jobs and SETUP returns to the calling routine. If, on the other hand,
the new job has a higher rank than all other quet,-.d jobs, it is placed at
the head of the ready-to-run queue and SETUP calls routine RESC,H be-
fore returning to the device control routine which called it.

The means by which SETUP calls RESCH is unique in the system.
Consider the situation in which several jobs become ready-to-run within
a short period of time. Each of these jobs was suspended pending some
event and the system is notified of the occurrence of these events by
means of interrupts on the Automatic Priority Interrupt System (API)
discussed previously. As each interrupt is received, control momen-
tarily passes to the appropriate device control routine which in turn
calls SETUP. It will be recalled that an interrupt on a given channel
will not be recognized until all interrupts on higher level channels have
been serviced. This means that an interrupt on the lowest channel,
Channel 17, cannot be recognized except at a time when there are no
unserviced interrupts on any of the higher channels. Each time SETUP
finds that a new job has a higher rank than all other jobs in the queue,
it creates an interrupt on Channel 17. Control is passed to RESCH
whenever a Channel 17 interrupt is recognized but this recognition will
not occur until all higher channels have been serviced. Thus, if a series
of jobs is set up in rapid succession, there may be several jobs which
are momentarily the highest ranked job ready to run, but the actual re-

36

scheduling will not take place, that is, API Channel 17 will not be
recognized, until all of the jobs in the flurry of interrupts have been
queued according to rank.

In addition to being initiated by an interrupt on A PI Channel 17,

it will be recalled that RESCH may be called directly by System Routine
SUSPEN. If RESCH is called by an interrupt, then the currently running
job is not suspender= voluntarily and must be, queued. . RESCH, therefore,
saves the values in the registers for this job. Regardless of the origin
of the call on RESCH, it then obtains a block of free memory from the.
Systems Routine MENIAL, stores the current contents of COMMON in
this Hock, and records the location of the block in the old job's JSTPTC
word. The location at which the job is to be restarted is also saved in
its JSTIC word. The location of the new job's stored COMMON is de-

termined from its JSTPTC word, the data are restored in COMMON,
and the memory block used for storage is returned to the pool of free
space. Finally, the registers are loaded with the values stored in the
new job's JSTAC and JSTMQ words and the job is restarted at the ap-
propriate location.

Memory management. As was discussed above, a fairly large
COMMON area is Bawd each time a running job is suspended or queued.

Since all swapping is done within core, this means that a large area of
core must be reserved as free space available for storing the swapped
data. In addition, as a job runs its course, it will often require large
blocks of memory for the temporary storage of input and subject-gener-
ated data. Since a job's demand for such space will vary over _time,
it is desirable to provide the job with this space only at times when it
is needed. Such considerations lead to the development of a memory
allocation package. (MEMAL, 1967) to provide jobs and components

of the system with variable-sized blocks of memory as they are needed.

37

With the current system configuration, MEMAL space is available in
all four of the 8K fields. The system, located in the two lower fields,
has access to space in all four fields. Applications jobs have access
to only the MEMAL space in their own field.

When a system routine or a' job requires additional space, it
passes the number of words required to MEMAL. MEMAL then
searches its list of available memory until it finds a block at least as
large as the request, marks off the space being allocated, identifies the
allocated block with the number of the requesting job and returns the ad-
dress of the block to the caller. If the caller so specifies, MEMAL will
zero all locations in the block before it is allocated.

When the space is no longer required, the address of the block
is passed to the MEMAL subroutine TAKE. TAKE first checks that

the address is indeed within the limits of MEMAL space and then deter-
mines whether the returned block is contiguous to any other block of
available space. If so, the blocks are joined together and treated as
one large block. If this were not done, the available space would soon
be cut up into many small and relatively useless pieces. If a job crashes
while running, system routine returns all the MEMAL space held by the
job.

Timing. Two types of timing are required by an experimental
control system. First, the experimenter may want to control the pace
of the experiment, limiting a subject's response time, controlling the
length of a stimulus presentation, etc. Secondly, he may wish to mea-
sure the subject's response latencies. The system under discussion con-
tains two separate timing devices for these two purposes.

(1) The first system, time delay, has been mentioned previously.
The experimenter may request an unconditional time delay, in which case
the job will be suspended until the expiration of the time delay, or he may

38

place a time limit on the subject's response by requesting a response
or a time delay. In this case, the job will be suspended until the occur-
rence of the response or the expiraron of the time delay, .whichever
occurs first.

Delay timing is controlled by a clock with a' cycle time of 2 milli-

seconds. For convenience, however, delays are requested in units of
one-hundredth of a second. Since there are several jobs running in the
system, there will usually be a number of time delays being counted down
concurrently. All time-delay requests are placed in a queue ordered on
the basis of the expiration time of each delay. The clock counts, down on

only the first delay in the queue. When a time delay request is received,
it is compared with the length of the first time delay in the queue. If the

new time delay is shorter, it is placed at the head of the queue. The time

delay which was previously at the queue head is now, second and has its
length shortened to the difference between its original length and the length
of the new time delay. For example, suppose that the first delay in the
queue, delay A, had an original value of five seconds. One second after
delay A was requested (its value is now four seconds), a one-and-one-half
second delay, delay B, is requested. Delay B is placed at the head of the
queue while delay A, with its value shortened to two-and-one-half seconds,
is placed in the second position. One-and-one-half seconds later, delay
B will expire and the clock will resume counting down on delay A. Delay

A will then expire two-and-one-half seconds later or five seconds after
its request was made. If a new time delay is longer than the first time
delay, it is successively compared to each of the delays in the queue. Fol-
lowing each comparison which finds the new delay to be the longer, its
value is decreased by the value of the delay with which it was compared.
Eventually, the delay is placed in 'its appropriate position in or at'the end
of the queue with its value reduced to compensate for all the delays pre-
ceding it in the queue. If it is found that a new delay will expire at exactly

39

the same time as an existing delay, the value of the new delay is in-
creased by a single two millisecond clock unit. The queue itself con-
sists of three cells in each job's JST, one cell which contains the ad-
justed delay value, one which contains the address of the immediately
prior delay in the queue and one which contains the address of the next
delay in the queue.

The clock simply decrements a value in a single register once
every two milliseconds. This register contains the current value of the
first delay in the queue. If a new delay is placed at the head of the queue,
the value in the register is corrected accordingly. When the value in the

register reaches zero, an interrupt is caused on API Channel 3. This
causes control to pass to system routine Time Delay Over (TDOVER)
which acts like a response device control routine to call SETUP to place
the delayed job in the ready-to-run queue.

Since jobs may also request conditional time delays, a suspended
job is frequently set up due to a subject response while its conditional
time delay is still in the time delay queue. When SETUP determines that
a job was suspended pending a time delay, whether this was the reason for
the termination of its suspension or not, it calls a Time Delay Delink rou-
tine (TDDL) which removes the appropriate delay from the queue. If the
removed delay was in the middle of the queue, the value of the next delay
is increased by the value of the removed delay and it is linked to the delay
which previously preceded the removed delay. If the removed delay was
at the head of the queue, TDDL, also starts the clock counting on the next
delay in the queue.

(2) The second system used for timing of external events is con-
siderably s4.mpler, It consists of a thirty-six bit register which is incre-
mented once every millisecond. This is treated as a "time-of-day" clock
and is never altered other than constantly being incremented. The clock

40

is read into two words of memory specified by the caller whenever the
appropriate IO T is issued. Since the value in the low order 18 bits is
repeated only once every eight-and-one-half minutes, the use of the sin-
gle low order word is usually sufficient for timing subject responses.

It will be recalled that a suspended job is placed in the ready-
to-run queue whenever a requested subject response is made. If there
are several other jobs in the queue, however, an appreciable length of
time (on the order of a few hundredths of a second\ might elapse between
the time the response was made a.nd the time at which the experimental
job read the clock. For this reason, all of the stimulus and response
device control routines provide options for reading the clock and storing
the time-of-day at the exact time that a stimulus is presented or that a
response is made. These stored times are then available to the experi-
mental job whenever it runs again.

Operator Control and Error Detection

For the most part, the operation of the system is controlled by
means of the control teletype and a package of system operator control
keyboard routines (SOCK, Jackson, 1968). As was mentioned previously,
the control teletype is assigned to API Channel Zero. In the event of a
system crash, the control teletype is least likely of all the peripheral de-
vices to be affected. Its various functions will be discussed in the order
in which they might be used by the system operator.

Currently, the system itself is stored on disc and is loaded into
the machine by means of a bootstrap paper. tape. This bootstrap contains
a short program which reads the system into core from disc and calls
system routine ANFANG which initializes the system, starts Job Zero
running and activates the control teletype. In the event that the system
needs to be reinitialized (following system crash, for example), it can

41

be done by means of the control teletype. The typed command AFNG

calls ANFANG which destroys all existing JST's, initializes MEMAL
space to include its full capacity, enables the appropriate API channels
and starts Job Zero running.

For the most part, currently operating applications programs
are stored on disc. System Routine DOODLE (Dynamically Operated

On-Line Disc Loader, Jackson, 1969) enables the operator to read and
write 8K fields to and from disc via the control teletype. The command

DLST causes DOODLE to list the symbolic names of all disc files. Typing

DRED File Name, Field Number causes the named file to be read into the
the specified field. Likewise, the command DWRT File Name, Field Num-
ber results in the contents of the specified 8K field being copied onto a
disc file which is then given the symbolic name specified. The command

DDEL Symbolic Name deletes the named file from disc. Any given file
may contain one or more experimental control programs, depending on
the size of the individual programs.

Once a program has been read into core, one or more jobs must
be created to use the program. This is done by means of a Create com-
mand as follows: CRET Job Number, Rank, Starting Address. This

creates a JST for the job of the specified number, as7igns the job the
specified rank, records the address at which the job is to start running
and leaves the job in the suspended state pending operator intervention.

Now the appropriate stimulus and response devices must be as-
signed to the job. Suppose that the program requires the use of a CRT
and a keyboard. There may be two or three such pairs of devices in the
laboratory and each device is identified by a Physical Unit Number. The
program, in turn, refers to each device by a Logical Unit Number. Since
two or more jobs may be using thefsame code-shared program, a unique
Logical-Physical Unit Number match must be made for each job. This

42

information is stu, sd in a Conversion table by means of the control
teletype Convert Add (CNAD) and Convert Delete (CNDL) commands.

For example, the command CNAD Job Number, Unit Type, Logical
Number, Physical Number constructs anentry in the Conversion Table
for the specified job and the particular type of device. Subsequent calls

on the device control routine from the experimental program will refer
to this entry to convert the logical number supplied by the program to
the specified Physical Unit Number. When a job is completed, the Con-
version Table entry is deleted by a CNDL command.

When the experimenter is actually ready to begin the experiment,
the operator will set up the suspended job via teletype command SETP as
follows: SETP Job Number, Suspension Reason, Starting_ Address. As

a result of this command, the job is placed in the ready-to-run queue as
was discussed above. Alternatively, the Create and Set Up commands may
be combined by means of the Job Go command: JBGO Job Number, Rank,
Starting Address. This command creates a JST for the job'and starts it
running at the specified address. At some times, such as in the case of
a program or experimenter error, it is desirable for the operator to be
able to suspend a running job from the control teletype. This is done by
means of the following command: SUSP Job Number. This will cause
the job to be suspended at its current address pending operator interven-
tion. At a later time, it can be restarts:d via the SETP command. A job
may be completely terminated and removed from the system by means
of the KILL command as follows: KILL Job Number.

As was discussed previously, system Job Zero runs when all other
jobs in the system are suspended. Normally, a system Job Zero simply
runs in a tight loop but at times it is convenient to transfer Job Zero's
control from its normal line of code (called Twiddle) to the DEBUG rou-
tine which normally (when there is room) resides in the very top of core.

43

This routine allows the operator to examine or alter a running program.
This transfer is effected from the control teletype by the command JOBZ
DD3 where the 3 indicates that the DEBUG program is to be found at the
top of, Field 3. Job Zero can be transferred back to its normal code line
by the command JOBZ TWD.

All system routines check parameters passed to them by experi-
mental programs and other system routines for errors. When such an
error Is found, the routine which discovered the error calls the system
error routine SYSERR. SYSERR determines whether the error concerns
only the offending job or if a general system malfunction is indicated. In

the former case, SYSERR simply suspends the offending job while in the
latter, it halts the entire system. In either case, a coded description
of the error is printed out on the control teletype.

Peripheral Equipment Control

The Central Executive System discussed above composes only
about, half of the, total Executive System. The next largest component is
the set of peripheral equipMent control (PERP) routines. While it might

be feasible for each experimental program to control the experimental
stimulus and response devices directly, this would result -in a large dup-
lication of effort and would substantially increase the complexity of the
individual experimental programs. Consequently, a package of control
routines is made available to the experimenter to control all of the stan-
dard terminal devices.

All PERP routines are similar in that they are "re-entrant."
That is, ,.a single routine will control several devices of the same type.
At any one time, it might be servicing two or more programs which in
turn are each controlling two or more devices of that type. Since only

one .job can be running in the system at a given time, there cannot be two

44

simultaneous requests on a PERP routine. Likewise, if all jobs in the
system have the same rank, a PERP request will normally be completed
before a second request is received. The major problem arises when
jobs in the system have heterogeneous ranks. For example, a low ranked
job may have made a request to a PERP routine just before the occurrence
of an interrupt and subsequent set-up of a higher ranked job. The lower

ranked job will then be suspended in the middle of the PERP routine. If

the higher ranked job then makes a call on the same PERP routine, the
routine will note that it is already in use. When this condition is detected,
the routine calls system routine RENTRY (Buckwalter, 1966) which sus-
pends the re-entrant job at the head of the PERP routine. The scheduler
will then automatically return control to the lower ranked job which is 'In
the middle of the PERP routine. If additional higher ranked jobs call the
active PERP routine, they would also be suspended in the same fashion.
When the PERP routine completes its work and is ready to return to the
caller, it checks its re-entry queue. If there are any higher ranked jobs
in the queue, the routine places a second call to RENTRY which then sets
up all of the suspended jobs in the queue: The scheduler then automatic-
ally sorts out the running order of the jobs and returns control to the high-
est ranked job which has been waiting' for the longest period.

A second point of simflarity between most PERP is the
GRAB feature. All subject terminal devices and some I/ 0 devices must
be grabbed by a job before the job can make use of that device. This pre-
vents accidental interference of an on-going experiment by a new experi-
ment which is just being set up. Once a particular job has grabbed a
piece of equipment (by means of a special GRAB call on the device con-

trol routine which in turn calls system routine GRAB, Buckwalter, 1966),
it retains exclusive control of that device until it has released it. If an-
other job of equal rank attempts to grab the same device, the grab is
denied and the Link is set when control is returned to the user to indi-

45

cate that that device is not available. If a job attempts to use a device

which it has not grabbed, it is suspended and a SYSERR message is
printed out on the control teletype. It is possible for a higher ranked
job to grab a subject terminal device (but not an I / 0 device) away from
a lower ranked job. This feature was designed into the system to allow
a human monitor to take over control of a student's terminal. It was

envisioned that such a procedure might be useful in the developmental
testing of CAI programs, but the feature has thus far never been used'
and it is likely that it will be dropped in future revisions of the system.

While all subject terminal devices must be grabbed, only some
of the I / 0 devices incorporate the grab feature. The paper tape reader
and punch and the printer must all be grabbed before they can be used.
The magnetic tape and disc need not be grabbed. If a second job places
a request to one of these devices while it is in use by another job, the
second request is simply queued until the first request is completed as
was discussed above under Multiple Entry.

Input/Output device routines. The system is supported by a
number of I / 0 devices: paper tape reader and punch, card reader,
magnetic disc, magnetic tape drive and printer. All of these devices
except the paper tape reader are controlled by system routines which
allow an applications program to read 07: write data.

PUNZIT (at:.::kwalter, 1969) controls the paper tape punch and
handles 3.11 grab, release, and punch commands. Data to be punched
are stored in a core buffer, the address of which is passed to PUNZIT.
At the user's option, PUNZIT will return the buffer to MEMAL space
following, the completion of punching. The user has the option of passing
PUNZIT the size of the buffer to be punched or setting an end-of-data flag
following the last character to be punched. Tape may be punched in either
an alpha-numeric o.r binary format. Finally, the user has the, option of

46

suspending until the completion of the punching operation or being
allowed to continue with other work.

CARD (Buckwalter, 1967) processes all calls to the card reader:
grab, release, and read. A separate call must be placed for each card
to be read and the number of card columns to be read must be specified.
Data read from the card is stored in a buffer location, specified by the
user, in either, binary, octal, or alpha-numeric format. Again, the user
has the option of specifying whether or not he wishes to be suspended until
the completion of the card read. The current routine was actually written
for a previous card reader. A new routine will be implemented when the
current card reader is interfaced through the multiplexer rather than via
the A C as it is now.

DISC (Slaughter, 1968) is a system routine for reading and writing

on the magnetic disc. Due to the short time which a job requires for a
single disc transfer, there is no grab or release function. Successive

calls are simply queued up by DISC and proceeded in the order of their
occurrence. Higher ranked jobs are able to exercise a priority option
which places their request at the head of the queue. A user may read or
write in either word or byte mode on side zero of the disc.. Only read
commands are accepted for the protected, side one of the disc which is
used for permanent storage of the system and currently operating pro-
grams. A minimum of one 3210 word sector may be read or written.
The user has the options of having his buffer space returned to MEMAL
on a write command and of suspending or not until the completion of
either read or write commands.

MAGTAP (Buckwalter, 1967) allows a user to control the mag-
netic tape drive. MAGTAP is not actually an in-system routine. A true
in-system routine will be written only after a battery of new drives is in-
stalled in late 1969. MAGTAP does not include the grab and release fea-

47

tures nor does it provide the options of suspending the user or returning
buffer space to MEMAL. The user is able to read or write on tape in
odd or even parity, erase tape, and skip tape records or files in both the
forward and backward directions.

PRINTR (Slaughter, 1968) is an in-system routine to control the
line printer. The commands available allow a user to grab or release
the printer, print a single line or move the paper to the head of the next
page. Since PRINTR queues successive requests, a job may make re-
peated calls on PRINTR, each call corresponding to one line and then
request suspension-until the completion of printing the last line. The

option of returning the print buffer space to MEMAI, is also available.

Examples of a stimulus device control routine. While space

does not allow a complete description of the software support of all of
the different terminal devices, it may be informative to discuss one of
these routines in some detail. The HYSPRJ (for high speed projector,
Pethia, 1968) routine for controlling the Kodak RA - 950 Carousel Pro-
jectors is a typical example of the stimulus device routines. This rou-
tine handles the positioning of slides, the suspension of the caller (if
desired), control of the projector shutter, and automatic position initial-
ization of the carousel slide tray. HYSPRJ may be called by any job
from memory fields 1 through 3.

When a job wishes to make a HYSPRJ call, the following sequence
of instructions is required:

LAC X /load the A C with the appropriate
command

EEM /place the system in extend mode so that
a cross field jump may be made

DPI /disable the API

48

JMS (HYSPRJ) /jump to the head of the HYSPRJ rou-
tine in field 0

If the job is simply grabbing or releasing the projector, the contents of
the AC (X in the example above) will contain a logi'cal number of the de-
sired projector and a zero or one, indicating grab or release respectively.
If the job wishes to position a particular slide for showing, the A C would
contain the command code 4 and a pointer to a parameter list. For the

HYSPRJ routine, the parameter list consists of two words. Word one
contains (a) a one-bit flag which indicates whether or not the slide is to
be shown after it has been positioned, (b) the number of the projector,
(c) a one-bit flag indicating whether or not the caller wishes to be sus-
pended until the completion of the positioning,. and (d) the number of the

desired slide. Word two of the parameter list contains a pointer to the
.

location at which the caller wishes to have.the time-of-day stored when
the slide is in position. If this word contains a zero rather than a pointer,
no time-of-day is recorded.

If the caller asked that the slide be positioned but not displayed,
he will make a later call requesting that the slide be shown. In this case,
the A C will contain a command code of 5 and a pointer to the parameter
list. Word one of the parameter list will contain only the number of the
project,:r and word two will again contain a pointer to the location at which
the time-of-day is to be stored.

Like most stimulus device and all response device control routines,
HYSPRJ consists of two subroutines -- a request processing subroutines
(RPS) and an interrupt processing subroutine (IPS). Flowcharts of these
subroutines are shown in Figures 1 and 2. When a call is received by the
HYSPRJ RPS, it first checks as to whether or not the routine is already
in use. If so, the calling job is suspended and queued by a call on system
routine RENTRY as discussed above. If not, then HYSPRJ checks the

49

HYSPRo FLOWCHARTS

HYSPRJ

(GET CALLING
PARAMETERS AND
INTERPRET
COMMAND CODE

P6GRB P6RLS P6INIT P6PST P6LIT

1 2

PROCESS

GRAB
COMMAND

PROCESS

RELEASE
COMMAND

3

PROCESS

INITIALIZE
COMMAND

PROCESS
POSITION
COMMAND

PROCESS
LIGHT
COMMAND

PROCESS
ERROR
CALL

6

"GRAB" "RELEAS" "SUSPEN"
DOES

USER WANT
TO BE

SUSPENDED?

YES

"SUSPEN" P6RETU

Figure 1. HYSPRJ Request Processing Routine

50

TEST RE-ENTRY
QUEUE FOR
JOBS FORCED
INTO SUSPENSION
AND RE-SET
TOGGLES

RETURN TO
CALLING JOB

"SYSERR"

P62

P6XSHO

HYSPRJ INTERRUPT PROCESSING ROUTINE

SAVE COMMON REGISTERS

ARE ALL
INTERRUPTS
PROCESSED?

YES
P6EXIT

NO

CALCULATE
PROJECTOR NUMBER

IS AN
INTERRUPT FROM
THIS PROJECT

EXPECTED?

YES

CALCULATE EQUIPMENT
STATUS TABLE AND JOB
STATUS TABLE ADDRESS

Figure 2. HYSPRJ Interrupt
Processing Routine

RESTORE
COMMON
REGISTERS

"SETUP"
SET UP USER FOR
PRJ. SUSPENSION
REASON

DE-BREAK
INTERRUPT
CHANNEL

51

RETURN TO
INTERRUPTED
PROGRAM

'validity and format of the data passed in the. A C and parameter list.
If any errors are found, the job is suspended via a call on the system
error routine SYSERR. If the command is a grab request, HYSPRJ
assigns the desired projector to the calling job (if that projector has not
already been grabbed), positions the carousel to slide position zero, and
returns immediately to the calling job. Return is also immediate for a
release request. In all cases, control is returned to, the job at the loca-
tion immediately following the JMS * HYSPRJ instruction. If the com-

mand is a display or "light ".' command (the appropriate slide having al-
ready been positioned), HYSPRJ issues the appropriate I / 0 T command
to open the shutter and then returns.

If the command was a positioning request, HYSPRJ checks whether
or not the slide is already in position. If not, it computes the appropriate
I / 0 T command for that slide position, issues the command, and sets a
flag to indicate whether or not the shutter is to be opened when the slide
is in position. Finally, it checks whether or not the user is to be sus-
pended until the slide is in position. If so, it suspends the job via a call
on system routine SUSPEN. If not, it returns directly to the user after
checking its RENTRY queue.

When a requested slide is in position, the control logic for the
projector causes an interrupt on A PI Channel 16 which in turn results
in a call on the HYSPRJ IPS. Since the interrupt broke into an on-going
job, all common registers are saved. The subroutine then does a limited
amount of error checking (to protect against hardware malfunctions), is-
sues an I / 0 T to open the shutter if the display flag is set, records the
time-of-day if it was requested and calls system routine SETUP to make
the requesting job ready to run if the job was suspended pending the com-
pletion of the positioning. After checking for additional interrupts on
Channel. 16, the IPS restores the common registers, reactivates Channel
16, and returns to the interrupted job.

52

The above discussion is far from a complete description of the
HYSPRJ routine. The parameter validity and format checking mentioned
is rather extensive. Due to the number of options available to the user
program, HYSPRJ is broken into a number of subroutines. The various

combinations of the requested options result in a number of different pos-
sible paths through these subroutines. All in all, the routine occupies
10408 machine locations.

Other stimulus device control routines. Other PERP routines
will be described only briefly. System routine SCREEN (Buckwalter,
1969) controls the various C R T displays. A user program can call
SCREEN to (a) plot a single alpha-numeric character in storage mode,
(b) display a text string in storage or dynamic mode, (c) plot an arbi-
trary list of points in storage or dynamic mode, and (d) erase a storage
mode display. In storage mode, the display is plotted once and remains
visible on the screen until it is erased. In dynamic mode, the points
plotted fade immediately, and display visibility is maintained by constant-
ly refreshing the display at a rate specified by the user. SCREEN's call-
ing sequence is similar to the HYSPRJ calling sequence described above.
Parameters are passed from the user program to SCREEN via the A C
and a parameter list. Unlike HYSPRJ, there is no suspension option
available to the user on display calls since relatively little time is re-

. quired to plot a display (an average of 1 msec. per character). A user
does have the option of suspending during an erase which requires 250
msec.

SCREEN consists of two major subroutines: (a) a request pro-
cessing subroutine and (b) a system timing job. The RPS accepts all

calls on SCREEN (namely grab, release, and display requests), and
checks for multiple entry and parameter format and validity. For a
grab, release, or storage mode display request, the RPS executes the

53

request and returns to the caller. For an erase request, the subroutine
sets the appropriate relay bit to start the erase, sets up the timing job
and returns to or suspends the calling job. When the timing job's time
delay expires, it terminates the erase and the RPS sets up the calling
job if it was suspended. For a dynamic mode request, the RPS plots
the display once and then sets up a timing job which autonomously con-
tinues refreshing the display.

CROW (Jackson, 1969 is the system routine which controls the
random-access audio units. It has the usual calling sequence in which
data is passed from the user to the system routine via the A C and a para-
meter list. A CROW request may be one of five commands: grab, re-
lease, pre-position the recording belt, play, or record. In addition, the
caller has the option of requesting a suspension until the completion of
his request. CROW consists of two main RPS and IPS portions. The RPS

receives all calls from the user job, makes the usual checks, and then,
in the case of a position, play or record request, starts the belt moving,
and activates the record or play heads as necessary. It then either re-
turns directly to the caller or suspends the calling job, depending on the
caller's option. As was discussed earlier, holes at the edge of the belt,
placed one second apart, are sensed photoelectrically and generate inter-
rupts. The IPS checks each interrupt for validity and then determines
whether or not the message is completed. If so, and if the caller requested
the suspension option, he is set up at this time.

The relay buffers, used for controlling non-standard stimulus de-
vices are relatively simple as compared to the devices discussed above
and have a correspondingly simple control routine. The relay PERP rou-
tine consists of three subroutines, each serving a different function and
each of which is called directly by the user job. Subroutine SETIMG sets

the specified relays to the on position, CLRIMG sets the specified relays

54

to the off position, and CNGIMG reverses the polarity of the specified
relays. In calling each routine, the name of the particular relay buffer
is placed in the MQ and the numbers of the appropriate relays in that
buffer are passed to the subroutines in the A C. No parameter list is
required, and there are no suspension optiond. Since there is no hard-
ware representation of the states of the various relays, the relay buffer
routine maintains a software record of the state of each relay.

Response device control routines. The first of the response
device control routines to be discussed is KBUNLK (Cook, 1966) which

controls the modified teletype keyboards which are usually used with
the CRT displays. As is true of all of the response device PERP rou-
tines, KBUNLK consists of RPS and IPS portions of about equal com-

plexity. Three commands are allowable: grab, release, and unlock
(or activate) the keyboard. Parameters are passed to KBUNLK in the
A C and a three-word parameter list. When the RPS receives a request,
it stores the parameters being passed, and makes the usual checks. If

the request is a grab or a release, return to the caller is immediate.
If the command is an unlock request, KBUNLK determines whether the
caller has exercised the option of requesting an "old" character. An old
character is a subject response which was made at a time when the user
job was not actually suspended waiting for a character, e.g., a response
made after the expiration of a response time limit. If this option was
requested, and if such a response was indeed made, the character code
is complemented (to indicate an old characters and returned to the user
job immediately. Otherwise, KBUNLK unlocks the keyboard and suspends
the user job via system routine SUSPEN. It will be recalled that suspen-
sion is mandatory when a job is waiting for a subject response. If the

user job requested a time limit on the response, KBUNLK requests that
the job be suspended until the occurrence of a keyboard response or un-
til the expiration of the time delay. In addition, it stores a zero in the

55

calling job's JSTAC word. If the time delay runs out before a response
is received, the job will be set up with a zero in the A C indicating that
the time delay expired.

When a subject response is made, the IPS portion of KBUNLK
first determines whether a job is actually suspended waiting for this re-
sponse. If not, it simply stores the response as an old character. If

there is a waiting job, the IPS records the time-of-day of the response
in the location specified by the user job, stores the character code re-
ceived in the job's JSTAC cell and calls system routine SETUP to place

the job in the ready-to-run queue.

System routine TOUCHE (Pethia, 1968) controls .the Touch Sen-

sitive Surfaces. TOUCHE has the usual calling sequence in which data
are passed from the user job to TOUCHE via the A C and a parameter
list. The RPS portion of TOUCHE receives all calls from user jobs,
makes the usual checks and determines whether the command is a grab,
release, or activate request. Grab and release commands are processed
and returned immediately. If the command i s to activate a touch display,
the time-of-day of the request is stored and that TOUCHE's active flag is
set to "active". From the hardware standpoint, the Touch display is
active at all times, so TOUCHE does not need to issue an I / 0 T to turn
the device on.

When the subject makes a Touch response, it causes an interrupt
on A PI Channel 2 which, in turn, calls the IPS portion of TOUCHE. The
IPS checks that unit's active flag. If the flag is not set to active, the in-
terrupt is ignored. If the unit is active, that is, if a job is suspended
waiting for a response from that unit, the time-of-day of the response
is stored and the coordinates are read and checked for legibility. If the

coordinates cannot be interpreted, a code of 400000 is placed in the job's
JSTAC word. If they can be interpreted, they are converted to a more

56

convenient octal format and then placed in the job's jSTAC word.
Finally, that unit's active flag is set to "inactive," and TOUCHE calls
system routine SETUP to place the job in the ready-to-run queue.

The "in-house" teletypes, those used in the laboratory, are
controlled by system routine BAGTEL (from bagatelle) (Jackson, 1968).
BAGTEL's method of operation is essentially the same as that of the
routines described above with the exception that it' controls both stim-
ulus and response devices. A user job may request (a) the printing of
a single character or a text string, (b) the activation of the teletype to
allow the typing of a.single character, or (c) the activation of the'tele-
type and the subsequent printing or "echoing' of the typed character.

System routine DPHONE (Pethia, 1969) handles all requests
.

concerning' data.phones and their associated teletypes. DPHONE has

been constructed so that its 'calling sequence and, in general, its ap-
pearance to a user, is identical to system routine BAGTEL, described
above. Therefore, any applications program written for the in-house
teletypes can also be run on a remote teletype via the dataphone system.
DPHONE differs from BAGTEL in that prior to issuing any dataPhone
I /0 T, DPHONE checkS whether the telephone line is clear to transmit.
If not, the applications program is suspended for a short time delay and
the line clear check is made again at the end of the time delay.

The in-house teletypes controlled by BAGTEL are all. full-duplex.
That is, a typed character is not automatically printed. A specific print
I / 0 T must be issued for each character. Remote teletypes, serviced
by DPHONE may be either full-duplex or half-duplex, in which case typed
characters are automatically printed,as they are typed.. Like BAGTEL,

DPHONE provides the option of echoing typed, characters so that a full-
duplex teletype may be treated as a half-duplex device.

57

Utility Programs

In addition to the system itself, there are a number of rou-
tines and program packages which are required for the preparation
and maintenance of the system and applications programs and for the
limited amount of data reduction which is feasible on the system.
First, there are the utility programs which are used in conjunction
with or in support of the time-sharing system. The most basic of
these is CORFIL (Broad ley, 1968) which is a basic bootstrap program
that loads all four fields from disc. CORFIL stores a debugging pro-
gram, described below, and the manufacturer-supplied FF and RIM
paper tape loaders in each field. The T & D TRIO program, also de-
scribed below, is stored in field one. The most common use of CORFIL

is to prepare the machine to load a program that is currently being de-
bugged and is stored on paper or magnetic tape. It is also used to load
operational extra-system programs that are stored on magnetic tape.

SYSLOD (Pethia, 1969) is the system complement of CORFIL.
It is also a bootstrap paper tape program that loads the system from
disc. The basic system is stored in fields zero and one, and mini-
execs are stored in fields two and three. SYSLOD then transfers con-
trol to system routine ANFANG which initializes the system, activates
the control teletype, and starts Job Zero.

DEBUG (Fitzhugh, 1969) is an on-line, interactive debugging
program operated from a teletype which has replaced the manufacturer-
supplied DDT (Digital Equipment Corp. , 1965). DEBUG allows an

operator/programmer to examine, alter, and control systems and ap-
plications programs being tested and corrected. It can reside in the
top of any of the four fields and can communicate with any of the other
fields.

58

RECORD (Skil len, 1969) is an in-system utility which is used
to control the random-access audio units for purposes of recording and
editing audio messages. It is operated from a recording station consist-
ing of microphone, headphones, modified teletype keyboard, and a CRT
used to display information concerning message length, belt position, etc.

All systems and applications programs are currently assembled
by means of the manufacturer- supplied MACRO-9 assembler (Digital
Equipment Corp., 1967). MACRO-9 is a two-pass assembler written
for the PDP-9 which produces binary object code from MACRO-9 assem-
bly language. In addition, it provides a number of pre-defined macros
(subroutines which may be incorporated into a program by simply ref-
erencing them) and allows the programmer to define his own macros.
Both features are currently being used in systems and applications pro-
grams. Conditional assemblies are also provided in which predefined
blocks of code may be selected for inclusion in a particular assembly
at the option of the programmer. Finally, MACRO-9 is capable of gen-
erating relocatable code. That is, once a program has been assembled,
it may be loaded and run at any core location. The macro and conditional
assembly features are currently being used by both system and applica-
tions programs. The relocatable code feature is currently used only with
extra-system programs run on the PDP-9. As it was supplied by the
manufacturer, input to MACRO-9 was by means of punched paper tape,
and output was in the form of paper tape and teletype listings. The as-
sembler has been modified to accept punched card input, to use disc or
magnetic tape as an intermediate storage medium, and to print program
listings on the line printer.

The PDP-9 software supplied by DEC also includes an I / 0 Moni-
tor System (Digital Equipment Corp., 1968a) and PDP-9 FORTRAN com-
plier (Digital Equipment Corp., 1968b). The I/O Monitor, controlled

59

from the PDP-9 teletype, facilitates the reading and production (list-
ing or recording) of data in a number of formats. As in the case of
the MACRO-9 assembler, it has been modified to use the disc, mag-
netic tape unit, card reader, and printer controlled by the PDP-7.
The I / 0 Monitor and FORTRAN are used primarily for the listing
and reduction of data generated by the CAI and experimental programs.

In addition, a number of out-of-system utility and diagnostic
programs have been written to facilitate the out-of-system transfer of
data between devices and to assist in the testing and maintenance of the
I/O and subject terminal devices.

Higher- Level Languages

The development of a language suitable for CAI and/or behav-
ioral experimentation has been one of the projects of LR D C. Initially,

this work (Ramage, 1967; 1969) was of a basic, theoretical nature, and
for the first two years, all applications programming was done in assem-
bly language. It was assumed that eventually a language would be written
which would be based on the results of the theoretical work being done.
However, due to the departure of the key personnel involved, this work
was slowed down. As a result, applications programming was being
seriously retarded by the lack of a suitable higher-level language, and
a language, even one that was only a temporary measure, was needed.
The result of this decision was SKOOLBOL (Nemitz, 1968). SKOOLBOL

(the name derives from COBOL, which it resembles in format) was de-
veloped for the purpose of immediate application to a specific system and
for a specific purpose. There was no thought of writing a more generally
applicable language suitable for other installations.

Since its development, SKOOLBOL has been continuously modi-

fied, u t the initial concept has remained the same. It is intended to

60

assist an applications programmer by reducing the complexity of the
most common operations in a typical applications program. In most

cases, this involves dropping some options in the device routine calls.
Whenever relatively unusual conditions are required, the programmer
lapses back into MACRO-9 assembly language. Typically, about twenty

per cent of a SKOOLBOL program is written in assembly language. As
long as the programmer follows the SKOOLBOL conventions, the struc-
ture of the language assures that his program is code-sharable, that
is, two or more jobs can use the code at the same time. All equipment

control calls have been simplified. For example, to print on a teletype,
the programmer simply loads the address of the text buffer and calls
SKOOLBOL routine TYPE. Textual materials to be displayed on the
teletype or C R T may be formatted on punched cards and identified as
text by a T in column one of the card. FORTRAN-like "DO Loops" are

provided which allow a programmer to repeat subroutine calls a pre-
determined number of times. Boo lian operators are available for con-
ditional transfers. The programmer has the option of using the octal
or decimal number system and may change from one system to another
when it is convenient. SKOOLBOL also includes pre-programmed rou-
tines which are frequently required in applications programs such as a
random-number generator and a routine to calculate means.

A SKOOLBOL language program (including blocks of assembly
language) is first pre-assembled into MACRO-9 format code. It is
then combined with the package of SKOOLBOL routines and assembled

by the MACRO-9 assembler. The conditional assembly feature of
MACRO-9 is utilized so that only the SKOOLBOL routines which are
actually used by the program are assembled with the program. The

final output is object code on punched paper tape and parallel listings
of both the SKOOLBOL program and the resultant MACRO-9 assembly

61

language program. The pre-assembly and assembly operations have
been combined by temporarily storing the intermediate MACRO-9
code on disc so that, to all practical purposes, a SKOOLBOL program
produces object code and the listing described above.

The major deficiency of SKOOLBOL for a behavioral research
systeni is its lack of bit manipulation capability. It results, therefore,
in inefficient table structures and the inefficient searching of tables. It

has some very cumbersome aspects and does not include all of the oper-
ations that would be desirable. A major revision of the language is there-
fore scheduled for 1970 (Chadwick & Fitzhugh, in preparation).

62

Documentation

The importance of computer system documentation cannot be
overemphasized. This is, perhaps, particularly to be emphasized
for a system in a behavioral research environment. If a psychologist
is accustomed to working with relay circuitry for experimental control,
the problem may be even more severe. A few scraps of paper in a hap-
hazard log book are usually sufficient to maintain and reconstruct all
but the most complex relay rack circuitry. While it may appear ob-

vious that more complete documentation is required for a computer
system, the extent of the documentation which is actually required for
efficient operation may not be at all obvious. In addition, when a system
is in a university setting, the documentation procedures must take into
account the mobility of the students and faculty who use and develop the

system. It is all too easy to come to rely on the expertise of a particu-
lar person rather than insisting that he take time from his work to record
what he knows.

Hardware documentation of the LRDC Computer Facility system
is based on the manuals. and drawings supplied by the manufacturers of
each device. These are supplemented by detailed drawings by the Engi-
neering staff of the interface between the device and the computer itself
and of any modifications made to the device. The Engineering staff pre-
pares a complete set of manuals and drawings for each device if the de-
vice was built or extensively modified in the LRDC shops. All of the
above documentation is catalogued by a master drawing list. The opera-
tion of the hardware and its relation to software also composes one chapter
of the LRDC Computer Facility Documentation Library.

Software documentation is a greater problem than hardware docu-
mentation. While it is possible to trace an undocumented circuit, it is

63

usually easier for a Programmer to write a new program than for him
to modify another Programmer's undocumented code. The LRDC Com-

puter Facility Documentation Library consists primarily of software
documentation, although as was mentioned above, one chapter is devoted
to the hardware aspects of the various peripheral devices.

Whenever a new device is installed or a new program is com-
pleted, the Technician or Programmer responsible submits documenta-
tion to the staff Secretary. The Secretary edits, publishes, and dis-
tributes the material to all members of the Facility staff. An index of
the cu:crent library contents is provided in Appendix A. This index is
stored on punched cards and is updated, listed, and redistributed to all
staff members on a monthly basis. Accompanying the index is a catalog
of documentation abstracts consisting of from one to ten lines for each
documentation note. These abstracts are also stored on punched cards
and periodically updated and redistributed.

The form in which documentltion is to be submitted has been
standardized. Each of the major chapters- -Hardware, Systems Soft-
ware, Applications Software, etc. --has its own specialized documenta-
tion format, but the formats are all somewhat similar sc as to facilitate
the use of the documentation. An outline of one of these forms, for sys-
tems software documentation, is given in Appendix B. It is hoped that
this outline will point up the more important aspects of such documenta-
tion.

64

Physical Plant

The LRDC computer room houses the PDP-7 and PDP -9
computers, line printer, card reader, magnetic tape drive, three
console teletypes, random-access audio units, dataphone cabinet,
a cabinet containing the subject terminal patch panels, two closed
circuit TV monitors, a large magnetic tape filing cabinet (the top of
which provides additional work space), and two files for manuals and

paper tapes. The 450-square-foot room has a raised floor to provide
a pathway for the cables connecting the various devices. To control
the noise level in the room, particularly when the printer, card reader,
or teletypes are running, a lowered ceiling of soundproofing material
was installed and heavy draperies were hung on three walls; the fourth
wall, facing a hallway, has glass windows for observation purposes.
The room is cooled by a 3t,, 000 BTU air conditioning unit mounted on

the roof. This provides barely adequate cooling and a 50 to 60, 000 BTU

unit would be more satisfactory.

Entry to the computer room is provided by an access room which
contains the magnetic disc, a desk for the operators, and cabinets and
shelves for storage of supplies, parts, tools, and maintenance equip-
ment. The various laboratories, which are all on the same floor, are
connected to the computer room by cables carried in a chble trough
mounted near the ceiling in the main hall which runs the length of the

building.

The main laboratory (designated the CAI Classroom) is a 300 -
square -foot room which has been broken up into a number of cubicles

by means of partitions of less than ceiling height. Three cubicles, each
of 25 square feet, are designed to cont ain a compact subject terminal
such as a CRT and keyboard. Two other cubicles each have a touch-
sensitive surface mounted in the front wall of the cubicle and provisions

65

for earphones and other stimulus and feedback devices which a particular
experimenter might wish add. The remainder of the room contains the
slide projectors used with the touch surfaces, a cabinet for storing slide
trays and a teletype for use by experimenters to control operating pro-
grams. The room has a raised floor for cables connecting the terminals
to the computer, and the ceiling, walls, and partitions are covered with
soundproofing material. A heavy-duty window air conditioner has, so
far, proven capable of dissipating the heat generated by the terminal
devices. Subjects working in the Touch-Surface cubicles can be observed
through one-way glass from an adjoining observation room. This room
is currently being wired for audio so that observers can monitor the
messages that the subjects are receiving. Most of the cubicles can
also be viewed via closed-circuit TV monitored in the computer room.

Five other smaller rooms are wired for computer-controlled
experimentation. None of these have raised floors, but each contains
a junction box which terminates the cables from the computer and to
which the particular terminal or terminals in that room are connected.
For the most part, these rooms are used for experiments that are fairly
short-lived and/or for which special purpose terminals are constructed.
In each case, a TV camera can be mounted in the room if the experimenter
so desires.

One small laboratory has been given a thorough soundproofing
. treatment and has been converted into a recording room. It is used

by anyone who needs to make tape recordings but was designed specif-
ically for recording and on-line editing of the random access audio unit
belts. Finally, a 400-square-foot electronics laboratory is used for
storage and for the design, construction, and maintenance of the subject
terminals.

66

Personnel

Over the four years that the LRDC Computer Facility has been
in existence, its organizational structure and staff have undergone
several transformations. Recently, however, it has appeared that it
will stabilize in something similar to its current configuration. A
general representation of the organization is given by the organizational
chart shown in Figure 3. As with any relatively small, active group,
it is often misleading to place individuals in specific organizational
slots. There are often overlapping areas of responsibility between
adjacent positions, and specific problems are usually treated by task
forces which may be composed of individuals from several sections
and strata of the organization.

Ultimate responsibility for the orientation of the Computer
Facility lies with the Co-Directors of LRDC. Specific behavioral re-
search and CAI development projects are initiated and conducted by
members of a rather amorphous group of users. For the most part,
the users group is composed of members of the LRDC faculty and staff.
In some case,:, members of external but associated departments have
run experiments on the system, It is anticipated and hoped that more
members of the University community will make use of the system in
the future.

The Facility Director holds primary responsibility for provid-
ing requested services to the system users and for the overall planning
and development of the system. In addition to administering and co-
ordinating the efforts of his staff (approxinciately 19 full-time equivalents),
he advises users and potential users on the system aspects of their re-
search.

67

03

LR
D

C
 C

O
M

P
U

T
E

R
 F

A
C

IL
IT

Y
 O

R
G

A
N

IZ
A

T
IO

N
A

L
C

H
A

R
T

M
A

N
A

G
E

R
 O

F
S

O
F

T
W

A
R

E
 -

D
E

V
E

LO
P

M
E

N
T

(V
ac

an
t)

I_

D
IR

E
C

T
O

R

C
om

pu
te

r
F

ac
ili

ty

K
E

Y
P

U
N

C
H

O
P

E
R

A
T

O
R

(1
)

A
D

M
IN

IS
T

R
A

T
IV

E
S

E
C

R
E

T
A

R
Y

(1
)

T
Y

P
IS

T
(1

)

K
E

Y
P

U
N

C
H

.O
P

E
R

A
T

O
R

T
R

A
IN

E
E

 (
1)

S
U

P
E

R
V

IS
O

R
O

F
 S

Y
S

T
E

M
S

P
R

O
G

R
A

M
M

IN
G

(1
)

S
U

P
E

R
V

IS
O

R
 O

F
A

P
P

LI
C

A
T

IO
N

S

P
R

O
G

R
A

M
M

IN
G

(1
.)

M
G

R
. O

F
 H

A
R

D
W

A
R

E
D

E
V

E
LO

P
M

E
N

T
 A

N
D

C
O

M
P

U
T

E
R

 O
P

E
R

A
T

IO
N

S
(V

ac
an

t)

S
U

P
E

R
V

IS
O

R
O

F
 C

O
M

P
U

T
E

R
O

P
E

R
A

T
IO

N
S

'

(1
)

rS
U

P
E

R
V

IS
O

R
O

F
 H

A
R

D
W

A
R

E
D

E
V

E
LO

P
M

E
N

T
(1

)

...
W

/4

S
E

N
IO

R
 S

Y
S

T
E

M
S

C
O

N
S

U
LT

A
N

T
(1

)

S
Y

S
T

E
M

S
P

R
O

G
R

A
M

M
E

R
(3

)

S
E

N
IO

R
A

P
P

LI
C

A
T

IO
N

S
P

R
O

G
R

A
M

M
E

R
(2

)

A
P

P
LI

C
A

T
IO

N
S

P
R

O
G

R
A

M
M

E
R

(3
)

Fa
ci

lit
y

C
O

M
P

U
T

E
R

O
P

E
R

A
T

O
R

(3
)

P
A

R
T

-T
IM

E
T

E
C

H
N

IC
IA

N
(1

)

S
E

N
IO

R
E

LE
C

T
R

O
N

IC
S

T
E

C
H

N
IC

IA
N

(3
)

E
LE

C
T

R
O

N
IC

S
T

E
C

H
N

IC
IA

N
(1

)

Fi
gu

re
 3

. L
R

D
C

C
om

pu
te

r
O

rg
an

iz
at

io
na

l
C

ha
rt

S
Y

S
T

E
M

S
P

R
O

G
R

A
M

M
E

R
T

R
A

IN
E

E
(1

)

The Manager of Engineering is, a gradaate electrical engineer.
He is responsible for the day-to-day operations of the Facility as well
as the design, implementation, and maintenance of the hardware system.

The Operations staff maintains control of the system during
normal daily service. This consists of running preventive maintenance
and system tests beginning at 7:00 a.m., preparing the system and
peripheral devices for subject runs, monitoring the system during such
runs, assuring that subject-generated data files are stored appropriately,
and running assemblies and data reduction programs during a daily opera-
tions period. In addition, it is desirable that the operators be able to
quickly diagnose system malfunctions to a sufficient degree to be able
to notify the appropriate member of the. Engineering or Software staffs.
The Supervisor of Operations, a Senior Electronics Technician, is
present during the early morning system checks and during the peak
service hours. He is supported by two less highly trained operators
who continue operator coverage until the completion of the daily opera-

tions period, usually about 7:00 p. m. The evening hours are devoted to
program debugging, and usually only the Programmer involved is present.

The Hardware staff covers several areas of responsibility. They
maintain the two computers as well as all of the attached I/O and subject
terminal devices. In some cases, they design as well as construct or
modify new terminal devices, construct and maintain the interfaces be-
tween the PDP-7 computer and the peripheral devices, and procure the
supplies and equipment required for their work. While each of the three
Senior Electronics Technicians in this group has one or more areas of ,

specialization, they cannot be neatly categorized as to main-frame versus
peripheral devices, or design, and construction versus maintenance. Con-

sequently their various functions have been grouped together in the organi-
zational chart. They are assisted by two Junior Electronics Technicians.

69

The position of Software Development Manager is currently
open. The position was previously held by the current Facility Di-
rector, and he continues to manage the programming effort. The

Software Manager is responsible for the preparation and maintenance

of all of the systems and applications used by the Facility,. In addition,

he coordinates his efforts with the Engineering Manager for the further
development of the system,,

The Supervisor of Systems Programming directs and coordinates
the growth, revision, and maintenance of all systems software and the
majority of the utility programs. While operating under the general

direction of the Software Manager, he is responsible for the detailed
functions of the time-sharing system and peripheral equipment control
routines. His staff currently consists of a part-time Senior Systems
Consultant who has been involved with the system from its inception and
one full-time Systems Programmer. Due to an anticipated increase in
systems work, two additional Systems Programmers will be added in the
near future.

Due to the complexity of applications programming (which is due,
in turn, to the flexibility of the system, the variety of terminal devices,
and the lack of a satisfactory higher level language) very few of the sys-
tern users writer their own experimental or CAI programs. The Appli-
cations Programming staff consists of two Senior Programmers and two
programmer trainees under the direction of a Supervisor of Applications
Programming, The Applications Supervisor has primary responsibility
for the design and implementation of the programs requested by the
various experimenters. In most cases, the Supervisor designs the
major aspects of the program on the basis. of his interaction with the
experimenter., The actual coding, debugging, and documentation of the
program is then done by a member of the Applications staff under his
supervision.

70

The Administrative Secretary, shown as reporting to the Facility
Director, actually serves the entire Facility staff. In addition to the

usual matters of correspondence, appointments, etc., she publishes and
maintains the Documentation Library, does the detailed scheduling of
system use, generates weekly reports to the users concerning system
operations, and supervises a full-time keypunch operator.

In addition to its own staff, the Facility also draws support from
several other groups within LRDC. The Center maintains general pur-
pose shops capable d constructing electrical and electronic devices as
well as carpentry, metal, and plastic work. In many cases, these shops
supply special purpose terminal devices for particular experiments as
well as constructing some of the subject terminals which contain the de-
vices. A substantial portion of the work of the Center photographic labo-
ratory is concerned with the preparation of slides used in the on-line
projectors. Due to the accuracy of registration required when slides
are projected onto a touch-sensitive surface, the photographers have
had to develop fairly sophisticated techniques for photographing stimulus
materials and mounting the slides.

71

Experimental Control Programs

Descriptions of 12 of the programs used to control experiments
run during the last two years are provided on the following pages. A
brief description of each experiment is given as well as descriptions of
the control programs. The program descriptions are far from detailed,
but an attempt has been made to demonstrate a variety of computer con-
trol applications and to emphasize the more interesting aspects of each
of the different programs.

While most of the experiments might be described as basic learn-
ing studies, some are more nearly experimental CAI programs. Two
major experimental CAI programs, a spelling program, and a numeral
discrimination program, have not been described. Both of these programs
are quite extensive and any attempt to describe them in the space avail-
able would be extremely cursory. Other than the fact that they required
very large data bases for their operation and that their program logic
was more extensive and complex, these programs illustrate few control
aspects that are not also illustrated by the shorter programs.

72

Program: Angle Discrimination

Experimenters: Alex Siegel, Robert Glaser, Jacqui Held

Prorammer: Raymond McKnight

Purpose: It has been shown that young children (ages three to four) have
great difficulty in learning to discriminate between oblique lines oriented
in opposite directions. In addition, earlier work in this laboratory had
demonstrated that discrimination learning was retarded if incorrect re-
sponses were immediately followed by the presentation of the next learn-
ing trial. It appeared that the incorrect responses were inadvertently
reinforced by the stimulus change produced by the presentation of the
next item. This study attempted to demonstrate that such a difficult
discrimination could be learned if the response history was appropriately
controlled. Two methods of stimulus presentation (fading, which mini-
mized error responses, and the classical contrast method, which allowed
frequent errors) and two response contingencies (delay, in which an in-
correct response did not result in a stimulus change, and no delay, in
which the reinforcing effects of stimulus change were possible) were
evaluated.

Subtects: Children four years of age

Program Characteristics: Several versions of this program were run,
all differing in some detail. The more general aspects of the control
program will be discussed. A series of 50 slides was presented by a
single slide projector. The child responded by pressing a round trans-
lucent window on which the stimulus was displayed. During different
phases of the experiment, both one and two windows (successive and
simultaneous discriminations) were used. Pressing on the window
triggered a micro-switch which was treated by the system as a single
element of the touch-sensitive surface. Reinforcement was provided

73

by a marble dispenser. The experimenter started the program by
means of a teletype in the room with the child and then observed from
a one-way vision window. Data were recorded on punched paper tape.

The ANGLE program was quite simple and only slightly response-
contingent. Program flow under one of the experimental conditions, a
simultaneous discrimination in which the subject was required to make
a correct response, was the following: A slide was shown and the sub-
ject was given ten seconds in which to make his first response. If no

response was made or if the response was incorrect, an incorrect-
response counter was incremented by one, and a second ten-second
period was begun. When a correct response was made, the subject
was reinforced with a marble, the slide was turned off, and a four-
second inter-item interval was begun. The latency of all responses,
correct and incorrect, was recorded.

Reference: Siegel, A., & Glaser, R. Mirror-image discrimination
learning in young children. Report in preparation,

74t

Program: Sum and Recall

Experimenter: Charles A. Perfetti

Programmer: Martin Chadwick

Purpose: This experiment composed one portion of a study investigating
immediate recall of sentences as a function of syntactic depth and lexical
density. A sentence of either high or low depth and high or low density
was presented to the subject. This was followed by an intervening task
of summing a Ei e r ie s of numbers. The subject was then asked to reproduce

the sentence to the best of his ability. An earlier portion of the study pre-
sented the sentences and numbers aurally, using a tape recorder, and the
subject wrote down his answers. The Sum and Recall program presented
the sentences and numbers visually.

Subjects: College students

Program Characteristics: Materials were presented on the CRT, and
subjects responded by typing their answers on a modified teletype key-
board. The program was completely linear and did not branch as a func-
tion of the subject's responses. In addition to variation in sentence depth
and density, two other experimental conditions were involved. Under the

"whole sentence" condition, a ten-word sentence was displayed on the
CRT for ten seconds. This was followed by presenting a series of seven
randomly generated numbers (ranging from 1 to 12) one at a time over a
period of ten seconds. The message "SUM AND RECALL" was then dis-
played. The subject first typed in his sum, and indicated the end of his
response by typing an asterisk. He then typed in the sentence as he re-
called it, again terminating his response with an asterisk. The subject's
responses were displayed on the CRT as he typed. Typing the asterisk
caused the CRT to be erased. No feedback was provided and the program
immediately proceeded to the next item.

75

Under the "partial sentence" condition, the ten words in the
sentence were presented one at a time at a rate of one per second.
After a word was presented, it remained on the screen so that, at the
end of ten seconds, the complete sentence was displayed for a period
of one second. This procedure was employed as an attempt to create
a condition,lying between the serial presentation of the earlier aurally
presented sentences and the simultaneous presentation of the "whole
sentence" condition... In other respects, the "whole sentence" and "par-
tial sentence" conditions were identical.

Data were punched out during the subject run and consisted of

the correct sum of the numbers, the subject's summing response, the
stimulus sentence, and the subject's reproduction of the sentence.

Reference: Experimental results are currently being evaluated.

76

Program: PALL I (Paired-Associate Learning Latency I)

Experimenters: Wilson A. Judd, Robert Glaser

ProZrammer: Wilson A. Judd

Purpose: Response latency was investigated in a paired-associate task
as a function of training procedure (comparison of the anticipation and

study-test paradigms) and information transmission requirements (an
eight-item stimulus list mapped onto two, four, or eight response al-
ternatives) during both acquisition and overlearning. The data were
treated on an item-by-item basis and analyzed relative to the trial-of-
last-error (TLE) for each item.

Subjects : College students

Program Characteristics: Stimuli were CVC's presented one at a time
on a CRT display. Subjects responded by pressing pushbutton keys
mounted in a semicircle on a specially constructed panel. The match-
ing of the keys to the stimuli was indicated by illuminating a pilot lamp
next to the correct key while the CVC was displayed on the CRT. The
stimulus materials and a set of 16 different stimulus-response match-
ings were all pre-stored in the program. The different experimental
treatments and specific stimulus-response assignments were selected
by entering a coded subject number via teletype. Item presentation order
within trials was determined by a random number generator. Response
latencies were measured and recorded under all experimental conditions.

Separate response records were maintained for each item. When
an item reached criterion of six successive errorless trials, it was
tagged as learned and any subsequent errors were ignored. The experi-
ment terminated ten trials after the last item in the list reached criterion.
This procedure assured that all items received at least 16 trials of prac-
tice after the TLE, that is, the trial preceding the series of six successive

77

errorless trials. All experimental conditions included a warm-up list
during which the subject was allowed only three seconds in which to make

his response. Response time was unlimited during the experimental lists.

Under the anticipation paradigm, the program flow was as follows:
The oset of a . 5 second auditory warning signal occurred 1. 5 seconds
prior to the beginning of a trial, where a trial consisted of one presenta-
tion of the complete list. A stimulus item was displayed on the CRT.
When a subject responded, or after three seconds had elapsed in the
warm-up list, the pilot lamp next to the correct key was illuminated.
Two seconds later the lamp was turned off and the display was erased.
Following a 1. 5 second inter-item interval, the next stimulus was pre-
sented, etc. Successive list presentations were separated by a four-
second inter-item interval. The study-test procedure was made as
similar as possible (in terms of timing, etc.) to the anticipation proce-
dure.

Data were punched out on paper tape during the experiment. A
data reduction program which rearranged the data into a TLE relative
matrix and listed the matrix and trial means on a teletype was run as a
background job. Thus, data produced by one subject could be reduced
while the next subject was being run.

Reference: Judd, W. A., & Glaser, R. Response latency as a function
of training methods, information level, acquisition and overlearning.
Journal of Educational Psychology Monograph Supplement, 1969, 6 0(No. 4,

Part 2).

78

Program: PALL U, III

Experimenters: Wilson A. Judd, Robert Glaser

Programmer: Ronald Confer

Purpose: Variability in response latencies had been found to be a severe
problem in the previous PALL equipment. These two studies investigated
potential methods of reducing this variability. This was done by (a) manip-
ulating the response time limits in a warm-up list, (b) placing the inter -
item interval under subject control, and (c) measuring the latency of re-
sponse onset as well as response completion. Only the study-test para-
digm was used. Materials consisted of eight C VC stimuli and eight re-
sponse keys. The stimulus and response devices were the same as
those used in PALL I, except for the addition of a "home position" key
in the center of the response key array.

Sul :cts: College students

Program Characteristi -s: Since these were basically exploratory studies,
the program was designed to permit the experimenter to vary many'of
the experimental conditions by means of values typed in from a teletype.
While this was quite useful, it proved to be fairly confusing and laborious.
For the most part, however, the program was similar to the PALL I
program in that individual item records were maintained and items were
trained to a TLE criterion. The PALL II program differed from PALL I
primarily in the way it was paced.

During the study phase of each trial, the stimulus and the correct
pilot lamp were displayed until the subject pressed the home key or until
the expiration of a maximum display time determined by the experimenter.
During the test phases, the stimulus was displayed when the subject press-
ed the home key. This allowed the subject to determine the time of stim-
ulus presentation and also assured that his finger was in the home position

79

at the time of stimulus onset. Subjects were instructed to hold the
home key down until they were ready to make a response and to then
make their response quickly. During the warm-up list, limits were
placed on the time which the subject was allowed to hold down the home
key and the time from the release of the home key to the depression of
one of the response keys. If either time limit was exceeded, the item
was counted wrong and the program went on to the next item. Latencies
were measured from the time of stimulus presentation to the release of
the home key (response onset) and to the depression of a response key
(response completion). There were no time limits in effect during the
experimental list but subjects were not informed of this. If keys were
pressed or released in other than the required order.indicating that the
subject was using more than one finger to responc'., the display was
erased and the item was presented again.

Reference: Judd, W. A., & Glaser, R. Variability of response latency
in paired-associate learning as a function of training procedure. Technical.

Report 9. Pittsburgh, Pa. : Learning Research and Development Center,

University of Pittsburgh, 1970.

80

Program: PALL IV

Experimenters: Wilson A. Judd, Robert Glaser

Programmer: Wilson A. Judd

Purpose: The previous work, described above, had indicated that response
latencies during overlearning might be indicati'e of how well individual
items are retained over a period of time. Pilot work was conducted to
determine the conditions under which a desirable, intermediate degree
of retention was obtained, and a final experiment was run which attempted
to demonstrate a relationship between overlearning response latency and
subsequent retention.

Subjects: College studf.its

Program Characteristics: The training procedure used was essentially
the same as that described for PALL II, except that no time limits were
placed on any of the subject's responses. Separate response onset and

completion latencies were measured but only the full S-R latencies were
used. The self-pacing procedure described for PALL II was retained.
The same program was used to control the initial training session and
the subsequent retention testing and relearning session.

The major point of interest about this program is its flexibility
and the method used to define the experimental conditions. As was men-
tioned, a series of pilot studies was run which required a variety of ex-
perimental conditions. In order to facilitate the variation of the experi-
mental conditions, an attempt was made to write PALL IV as a more
general purpose paired-associate learning program. All input to the
program was on punched cards, read at run time. First, an ID card
provided the subject number, session number ffor conditions under
which each subject was run a number of times), and the number of
paired-associate lists to be learned during thz.t session.

81

Each list was headed by a parameter card giving the conditions
under which that list was to be presented. The conditions available
were as follows: (1) How long was practice to be continued? The ex-
perimenter had the option of running for a set period of time (specified
in seconds), for a specified number of trials, or to an item criterion of
a specified number of errorless responses. (2) If the learning criterion
option was selected, the experimenter could specify the number of addi-
tional overlearning trials (if any) which items were to receive once they
had reached the learning criterion. (3) Once an item reached the spec-
ified criterion, it could be dropped or retained in the list. Practice
could continue until a specified number of items had been dropped or
until all items in the list had reached criterion. (4) What time limits,
if any, were to be placed on the onset and completion aspects of the
response as described under PALL II. (5) The experimenter had the
option of skipping the study phase of the first trial and starting with a
retention test. (6) Finally, the number of items in the list was specified.

Following the parameter card was a deck of cards specifying the
list., one card for each item. Columns one through eight of each card
contained the stimulus, any word of up to eight letters, and the corres-
ponding response number NiVa.S punched in columns nine and ten. This

scheme proved to be quite satisfactory. On several occasions, pilot
work evaluated in the morning suggested experimental changes which

were instituted with subjects run that afternoon.. There is no doubt
but that the procedure could be improved, but the scheme does appear
to be a step in the right direction.

Data were recorded on disc during the experiment and punched
out on paper tape by a background job following the completion of that
subject's run.

Reference: Judd, W. A., & Glaser, R. Response latency as a correlate
of retention. Report in preparation.

82

Program: TAP II

Experimenter: Charles A. Perfetti

Programmer: Raymond McKnight

Purpose: TAP II investigated the ability of children of various ages to
deal effectively with grammatical transformations. The subject was
presented with a stimulus sentence such as "The boy hit the ball" and
was then asked to select the correct sentence fromtwo alternatives such
as "The ball was hit by the boy" and "The ball hit the boy." The subjects
were assisted in their discriminations by three different degrees of visual
prompting, conditions 1, 2, and 3 of the experiment.

Subjects: Children four to eight years of age

Program Characteristics: Auditory stimuli were presented by the random-
access audio units. The subject responded by touching a section of a slide
displayed on the Touch-Sensitive Surface. The experimenter controlled
the program by commands typed on a teletype adjacent to the Touch Surface.

Under condition 1, the subject was instructed to touch the correct
scene and then heard the stimulus sentence while a slide was displayed
which showed both the action of the stimulus sentence and its reversal.
Any responses which were not in the area of one of the two scenes were
ignored. If no "legal" response was made witin the allotted time, the
instruction was repeated. If the child did not respond within the second
response period, the program proceeded to the next frame. If the sub-
ject made an incorrect response, he was given an audio message that
his response was wrong and the instruction was repeated. The program
then moved to the next frame regardless correctness of his second
response. A correct response was reinforced by a bell and the next
frame was presented immediately.

83

Experimental conditions 2 and 3 were particularly interesting
since they gave the subject several different opportunities to make a
response. Each frame in condition 2 consisted of an audio message
and four slides. A sentence was presented in the presence of slide 1
which showed a scene depicting the action in the sentence. At the com-
pletion of the sentence, slide 2 was displayed which showed a picture
of a cat and a scene depicting either the action of the stimulus sentence
or its reversal. A second audio message was then played which consisted
of "The cat says --" and either a correct transformation of the sentence
(if the scene displayed depicted the action of the stimulus sentence) or
the reversal of the stimulus sentence. The child was then given an op-

portunity to touch the display if he thought that it was the equivalent of
the stimulus sentence. If he made a response and was correct, the pro-
gram proceeded to the next frame. If he made an incorrect response,
he was told that he was wrong, the sentence was repeated and the pro-
gram proceeded to the next slide. If he did not respond within the allotted
time, the program simply went on to the next slide. Slide 3 showed a pic-
ture of an elephant and a scene depicting either the action of the stimulus
sentence or its reversal. If slide 2 was correct, slide 3 was always in-
correct, and vice versa. The procedure followed for slide 3 was the
same as that for slide 2 except that if the subject made an incorrect
response, the program recycled through slide 2 and its accompanying
audio message and then returned to slide 3.

If the subject responded to neither slide 2 or 3, he was shown
slide 4 which included pictures of a cat, an elephant, and the action de-
picted in the stimulus sentence. He was then instructed to touch the
animal which was correct. A correct response resulted in reinforce-
ment and presentation of the next frame. An incorrect response caused
the program to recycle through slide 2 of the current frame.

84

Condition 3 was the same as condition 2 except that the scene
depicting the stimulus sentence or its reversal was not included in any
of the slides,

Reference: Experiment still in progress.

85

Program: Letter. Discrimination

Experimenters: J. Michael O'Malley, Robert Glaser, Lauren Resnick

Programmer: Martin Chadwick

Purpose: This study investigated the effects of response dirhension
pre-training and list length on the acquisition of a multiple discrimina-
tion by pre-school age children. The multiple discrimination problem is
represented by such tasks as naming of letters, numbers, colors, etc.
The particular discrimination task used in this study was the recognition
of an auditorially presented letter among four visual response alternatives.
Pre-training was on either the relevant dimension, shape, or an irrelevant
dimension, color. List length was varied by training the subject to dis-
criminate eight letters in subsets of two, four, or eight. The dependent

variables were pre- and post-test score and the number of errors during
acquisition.

Subjects: Pre-school age children

Program Characteristics: The program was presented on a Touch-Sensitive
Surface using two slide projectors, a random-access audio unit and a tele-
type for use by the experimenter. Data concerning the subject and the ex-
perimental conditions of that session were entered by the teletype at the
start of each session.

There were three phases to each session except the last. The first
session began by training the subject to use the Touch-Sensitive Surface.
This was followed by a pre-training phase in which the subject was exposed
to the letters he would learn in that session and was trained to attend to
either the color or the shape of the letter. This was followed by the train-

ing phase proper in which the name of the letter was finally introduced and
the color cues to the letters were dropped. In sessions two and three, the
touch-training phase was replaced by a post-test on the letters learned in

86

the preceding session. Session four consisted of only the post-test. The
touch-training, pre-training, and training phases were all divided into
two sub-phases, identification and recognition. Since the procedures used
in the sub-phases were roughly equivalent in the different phases, only
the touch-training phase will be described.

Each of the eight frames in the identification sub-phase began by
displaying a slide showing only a colored square near the top of the screen.
When the subject touched this square, it was immediately replaced by a
slide, projected by the second projector, which displayed a collection of
animals. An audio message such as "Touch the cow" was then presented.
A correct response resulted in the re-presentation of the square which,
in turn, led to the next slide. If the subject responded incorrectly, a red
circle, projected from the other projector, was displayed around the cor-
rect animal. This was accompanied by an audio message such as "Touch
the cow; the animal with a red circle around it." If the subject's second
response was incorrect, this message was repeated. A third error re-
sulted in a call to the experimenter's teletype asking for a decision as to
whether to proceed or to terminate the subject.

The recognition sub-phase reviewed the same eight animal identifi-
cations using roughly the same logic. In this case, however, the sequence
of frames was repeated until all of the frames had reached a criterion.
Criterion for a frame consisted of n successive correct first responses
to that frame where n was specified by the experimenter at the beginning
of the session. As each frame reached criterion, it was dropped from
the series.

Reference: O'Malley, J. M., Glaser, R., & Resnick, I,. Response

discrimination pretraining and list length in learning a multiple discrim-
ination. Report in preparation.

87

Program: Preferences

Experimenters: Sigmund Tobias, Robert Glaser

Programmers: Martin Chadwick, William Schmeidlin

Purpose: This study investigated the question of whether, once an
individual has been exposed to two instructional methods, his preference
for one method leads to higher achievement with that method than with an
alternative method. Subjects were taught to spell 28 words with one of
two methods: (1) a visual method in which the subject heard the word
and then saw it printed out on a teletype, one letter at a time, and (2) an
aural method in which the subject heard the word pronounced and then
spelled out aurally, one letter at a time. Under either treatment, the
subject was then required to type the word.

The experiment used four experimental groups. Group 1, the
preference group, selected their preferred instructional method at the
start of each of four training periods. Subjects in the second group

were used as yoked controls for the preference group, each subject in
the yoked group receiving the same instructional treatment as a subject
in the preference group. In addition, an attempt was made to equate the
spelling words of two matched subjects as closely as possible. Group 3
received only the visual training method and Group 4 only the aural method.

Sub ects: Fourth-grade school children

Program Characteristics: The experiment was run at the Oakleaf Ele-
mentary School, an elementary school associated with LRDC and located
in a Pittsburgh suburb. The subject terminals consisted of a teletype,
controlled by dataphone from the Computer Facility, and audio trans-
mitted over telephone lines from the random-access audio units.

Spelling words were drawn from a pool of 70 sets of three words
each, words within a set being selected so as to be very similar to each

88

other. Each of four sessions began with a pre-test for all subjects.
The subject heard an audio message such as "The cow is in the field.
Spell the word cow. " If the subject misspelled the word, it was used
as one of the experimental words. If he spelled the word correctly, he
was tested on another word from the same set. If he was able to spell
all words in a set correctly, the program moved on to another set.
This procedure continued until one misspelled word was found from each
of seven sets.

All subjects were next given a demonstration of both the visual
and aural training methods. The preference group subjects were then
given their choice of training method, indicating their preference by
answering a question printed out by the teletype.

The training procedure followed the same format for all groups.
The program cycled through the seven words twice. The word was

presented by the visual or aural method and the subject was instructed
to type it. If the subject misspelled a word, it was presented again by
the same training method. He was allowed up to ten attempts before
the program moved on to the next word. The session ended with a post-
test using the same logic as the pre-test except that the subject was
tested on only the seven words on which he had been trained.

One of the more interesting aspects of this experiment was the
method by which spelling words were selected for the yoked group.
Data for all subject runs were stored on magnetic tape. Prior to any
session, data were transferred from tape to a data file on the magnetic
disc. A preference subject was run through all four sessions before
his yoked subject began the program. During the pre-test for a yoked
subject, he was first given a word which his matchmate had misspelled.
If the yoked subject also misspelled that word, it was used as one of his
spelling words. If the yoked subject spelled the word correctly, the

89

program tried one of the two other words in the same set. If the subject
could spell all of the words in the set, the program began searching
those sets to which the subject's preference group matchmate had not
been exposed. In doing so, the program considered only those words
which were within one letter of being the same length as the word which
it was attempting to match. When a word was found which the subject
could not spell, the program moved on to the next word misspelled by

the subject's matchmate. When seven such words had been determined,
the training procedure was begun.

The data file stored on disc was constantly updated as the sub-
jects responded. At the end of the session, the updated file was copied
onto magnetic tape and a summary of that session's results was punched
out on paper tape.

Reference: Tobias, S., & Glaser, R. Effect of pupil choice of instruc-
tional method on achievement and attitude. Report in preparation.

90

Program: Digit Memory Span

Experimenter: James G. Holland

Programmer: Marjorie Jackson

Purpose: This was one experimental CAI program employed in a project
on the training pre-school skills. Series of digits were presented audi-
torially to which the subject responded by touching the appropriate digits,
in the right order, on the Touch-Sensitive Surface. As the series pro-
ceeded, the series increased in length and complexity. Early items at
each level of difficulty used stress and pauses to help the subjects seg-
ment the series. Complexity was increased by changing the order of
the digits first at the beginning of the series, then at the end, and finally
in the middle of the series.

Subjects: Pre-school age children

Program Characteristics: The number sequences were presented via
the random-access audio units. Following the completion of the audio
message, the numerals 1 to 9 were displayed on one row of the Touch-
Sensitive Surface. The subject responded by touching the numerals in
the appropriate order. It was found that performance was facilitated
by an immediate auditory signal whenever the subject touched the screen
and his response was registered. If he completed the sequence correctly,
the program moved on to the next frame in the series. If he made an
error at any point in the series, the display was immediately turned
off and the audio message was repeated. The subject continued work-
ing on the slide until he made a correct series of responses, at which
time the program returned to the immediately preceding slide.

Reference: Study is still in progress.

91

Program: Object Memory Span

Experimenter: James G. Holland

Programmer: Marjorie Jackson

Purpose: This program was essentially identical to the Digit Memory
Span program described previously with the exception that pictures and
names of everyday objects were substituted for numerals. The early
frames in the program presented related objects and used stress and
intonation to help the child retain the sequence. Later frames presented
unrelated objects with equal stress and intonation.

Subjects: Pre-school age children

Program Characteristics: The functions of the Object Memory program
were identical to those of the Digit Memory Span program with the ex-

ception that while only one slide was required for the Digit program,
the Object Memory program required that a series of slides be coordinated
with the appropriate audio messages. The final version of the Object
Memory Span program was revised to include control of the Digit Memory
Span experiment as well.

Reference: Study is still in progress.

92

Program: Logical Classification and Concepts of Relationship (LC&C)

Experimenter: James G. Holland

Programmer: Robert Fitzhugh

Purpose: This was another of the experimental CAI programs used in
the project on training pre-school skills. It was designed to further the
development of "formal logic, " i. e., the abilities to form class concepts
and to understand the basic relationships that exist between classes or
between objects within .a class. The material was designed to teach the
child to match on the basis of (1) some identical perceptual quality,
(2) some similar quality or qualities not readily perceived, and (3) use
or function. It also attempted to teach the child to shift readily from
one basis of classification to another, to induce classes from given
groups of examples, and, to deduce the reason for a given categoriza-
tion.

Subjects: Children ages five to six.

Program Characteristics: The program was presented by use of the
Touch-Sensitive Surface, one slide projector, and a random-access audio
unit. The experimenter controlled the program by means of a teletype.
Prior to an experimental run, the experimenter entered specific data
about the subject (name, age, etc.), specified the starting item number,
and typed in any additional comments he might wish to add about that
particular subject. These comments were listed on the final data out-
put for that subject.

The program was composed of five basic item types, the first
four of which had similar program characteristics. These four were
as follows: (1) A collection of objects was displayed on the screen all
of which had one common attribute. The subject heard an audio mes-
sage which named the attribute and asked him tc select the one object

93

from a second array (shown on the bottom of the screen) which also
had this attribute. (2) The subject was shown a collection of objects
all having one common attribute. He was then shown another collection
of objects and asked to touch as many objects as he could which had this
same common attribute. (3) Shown an array of objects, the subject was
asked to touch the one object which was different. (4) The subject was
shown a collection of mixed objects and was asked to touch those objects
in the collection which all had the same specified attribute. Touch sur-
face areas on which no stimulus was projected were treated as null areas
and touch responses in these areas were ignored. Any other response,
correct or incorrect, generated a short high-pitched audio tone to in-
dicate that the response was registered. A correct response was rein-
forced by a light and a loud tone. If the correct response was also the
subject's first response to that item, he was further rewarded with a
marble. A subject continued working on a frame until he made the cor-
rect response. If one or more incorrect responses were made on a
frame, the program re-presented the previous frame.

The final, type-5, items are of particular interest. The subject
was shown a collection of objects and asked to categorize the objects in

as many different ways as he could. Any one slide contained several
different sets of objects. That is, the objects might be categorized on
the basis of size, color, function, etc. Any one object might be a mem-
ber of several different sets. As the child responded, his successive
responses defined the category with which he was working, e. g., large,
small, blue, red, headgear, footwear, etc. If the subject deviated from
a category which he had defined by his previous responses, failed to find
all the objects in that category, or started to repeat a category, he was
told the nature of his error and required to begin that category again.
He continued working on a frame until he had exhausted all of the cate-
gories (two to eight) available on that slide.

94

The logic of this section of the program is of special interest
since it demonstrates the programming efficiency that may be achieved
by means of bit manipulation and the powerful decision-making capacity

of a carefully designed program. Each type-5 frame had 10 to 15 data
words associated with it, one for each object on the slide. Each pos-

sible attribute was represented by a bit-position in that word, If an

object had a particular attribute, the appropriate bit was set to one in
that object's data word. An additional bit indicated whether or not that
object had been touched while the subject was working on the current
category. While a subject was working on a particular frame, data
concerning that frame was stored in three registers: Word A--the set
of attributes that the subject has defined for the current category by
his responses thus far; Word B--the attributes of all previously com-
pleted categories in this frame; and Word C--the attributes of all of
the categories in this frame.

The logical steps in the type-5 item routine are given below:
1. Play the audio message, "Touch all of the things that go together."
2. Set the contents of Word A to zero and zero all of the "touched"

flags in the data words.
3. Activate the touch surface with a conditional time delay so as to

allow a response within a limite ' time period.
4. Was a response made, as opposed to the termination of the time delay?

If yes, go to step 6.
If no, continue.

5. Has the subject made any response in attempting to define a new
category, 1. e. , is Word A non-zero?
If yes, play a prompting audio message, "You didn't finish, start
over." Go to step 2.
If no, go to step 1.

95

6. Did the subject touch any object, as opposed to a null area?
If yes, provide an audio "beep" to indicate that the response was
registered. Continue.

If no, go to step 3.
7. Has this object already been touched during the subject's definition

of this category, i. e. , has the data word been tagged as touched?

If yes, go to step 3.
If no, continue.

8. Tag this object as touched by setting a bit in its data word. Is this

the subject's first response in defining a new category, i. e. , is

Word A zero?

If yes, store the attributes of this object in Word A. Go to step 10.
If no, continue.

9. Does this object possess any of the attributes in the set of attributes
defined by all previous responses in this category? This is deter-
mined by anding this object's data word with Word A.
If yes, store the result in Word A and continue.
If no, play the audio message, "Those don't go together." Go to step 1.

10. Are any of the current set of attributes different than tae attributes
of the completed categories. And the contents of Word A with the
complement of Word B.

If yes, continue.
If no, whatever attribute the subject is working on has already been
done. Play the audio message, "You already did that one, start over."
Go to step 2.

11. Has the number of attributes been reduced to one by the subject's
series of responses? That is, is only one bit set in Word A?
If yes, continue.
If no, go to step 3.

96

12. Have all objects possessing this attribute been touched? Is the

"touched" bit set in all of the data words in which the bit corre-
sponding to this attribute is set?
If yes, continue.
If no, go to step 3.

13. This category is completed. Present the reinforcement stimuli,
add the new attribute bit to Word B, and continue.

14. Have all categories on this slide been exhausted? And the complement
of Word B with Word C.

If yes, go on to the next frame.
If no, go to step 1.

Data were stored on disc as the program ran and punched out at
the end of the run by a background job. The resultant paper tape was
later used as input to a FORTRAN program which reduced and listed the
data.

Reference: Experiment still in progress.

97

Program: Simple Spelling

Experimenter: Merryl Samuels

Programmer: Raymond McKnight

Purpose: Simple Spelling was designed to investigate a spicific question
concerning the treatment of errors in a spelling program and the effect
of two treatments on the subject's long and short term memory of mis-
spelled words. Under the first condition, the subject was required to
copy the correct spelling of an incorrectly spelled word. Under the
second condition, the subject was simply told to study the correct spell-
ing of an incorrectly spelled word. In both cases, the child was then
re-tested on the spelling of the word. All words were then reviewed at
the end of that day's session and following a period of one week.

Subjects: Children six to eight years of age

Program Characteristics: Instructions and the spelling words were pre-
sented via the random-access audio units. The subject responded by

typing on a teletype which was also used by the teacher to control the

program. Each word was first present ed by an audio message such as
"Spell the word Sunday." The phrase "Spell the word -" was recorded
on the belt only once. After playing this message, the program selected
and played the specific spelling word. As the child typed, his response
was checked letter by letter. If he typed an incorrect letter, that letter
was not printed and he was given a chance to correct his mistake by
re-typing the letter. He was allowed a total of three errors in any one
word before that word was counted as incorrect.

When a word was deemed incorrect, the child received either
the copy or study treatment on a random basis. Under the copy treat-
ment, the correct spelling of the word was typed out and the child was
instructed to copy the word. Any copying errors caused the word to be
re-typed and the copy message to be repeated. If the child made more

98

than two copying errors, the program went on to the next word. If the
word was copied correctly, the teleprinter paper was moved up to hide
the correct spelling of the word and the child was re-instructed to try
typing the word. The program then moved on to the next word regard-
less of the correctness of his response. Under the study treatment,
the correct spelling of the word was displayed and the child was instructed
to study the correct spelling. After four seconds, the paper was shifted
up and the child was re-instructed to type the word. Again, the program
moved on to the next spelling word regardless of his response.

Each day's session consisted of 15 spelling words. At the end
of a daily session, the child was tested on all words that he had received
that day and on the words which he had received a week earlier.

Reference: Pilot study.

99

On Developing a Computer Laboratory

This chapter will attempt to summarize r ome of the experience
gained during the development p.nd use of the LRDC Computer Facility.
Some of the points mentioned may be more or less obvious; but taken
as whole, they may be of value to the interested behavioral experimenter.
It must be emphasized that these conclusions are based on a single sample
and as such have limitations, particularly if one is interested in extrap-
olating the implications to larger or smaller systems. Also, it should
be noted that the author has been more concerned with the software
aspects of system development than with the system hardware, and
this has undoubtedly biased his viewpoint.

The type of system described in this paper is only one approach
to on-line behavioral experimentation. An individual experimenter may
find a very small, non-time-shared machine, capable of running one
subject at a time, to be a more satisfactory approach and, more im-
portantly, within the limits of his resources. In some cases, terminals
attached to university or commercial time-sharing systems may be
adequate. While this is usually a much less expensive procedure, it
must be recognized that the degree of experimental control is substan-
tially reduced; this appears to be the case, at least, with the time-
sharing services currently available. In the opinion of the author, the
type of system described in this paper is the optimal solution for a re-
search center or university department which includes a number of in-
terested experimenters and has available resources which are sufficient
for developing and maintaining such a system.

Given that it is feasible and desirable to develop a medium- to
large-scale time-shared system, how does the interested but relatively
naive researcher set about the task? Unfortunately, there do not appear

.100

to be any completely satisfactory answers. While the researcher should
become as well-grounded in computer technology as is possible for him,
it is doubtful that he can become as competent as he would wish without
neglecting his research interests. Reading Uttal's Real Time Computers
(1968) and Green's Digital Computers in Research (1963) is probably one
of the best ways to gain an initial exposure to the area. There are sev-
eral operating on-line laboratories in the U.S. and Canada, and it would
be well to investigate the strengths and weaknesses of as many as pos-
sible (e. g. , University of California, La Jolla; University of Colorado,
Boulder; Ontario Institute for Studies in Education, Toronto; University
of Texas, Austin; Stanford University; University of Rochester).

Since the researcher probably cannot become as knowledgeable as

he would desire, it is obvious that he will have to seek expert advice
and assistance. In a field as new as that of time-shared computer sys-
tems, however, it is not always easy to identify an expert, and the ad-
vice received from various quarters is likely to be quite different. One

solution would be to rely on a single manufacturer to analyze require-
ments and to suggest a particular system configuration, but this has
its obvious disadvantages. The researcher can only hope to become
sufficiently knowledgeable to be able to make an intelligent choice be-
tween the alternatives suggested to him. If it is at all possible, it
would be preferable to obtain the services of a competent and experi-
enced computer technologist in the earliest stages of the project.
Such help might be made available from the university computer sci-

ence department, but there are distinct advantages to having a computer
facility manager or consultant whose primary interests lie within the
facility.

101

Installation and Development

The installation of a medium-sized computer system is likely
the largest single capital investment that a behavioral science labora-
tory will make. While it is obvious that there is more than one com-
puter manufacturer in this country, it is essential that the manufac-
turer(s) selected to supply the equipment be competent. It must be
recognized that, at this time, time-sharing is still a state-of-the-art
affair and even the best companies have not had unqualified success
with their time-sharing systems. Beware of the manufacturer who
offers a particularly attractive price tag because, as he states, "The
company is trying to break into the field." A bargain system or bar-
gain components may well turn out to be extremely expensive in the
long run, due to their low reliability and, in some cases, actual de-
sign errors. Reliability, particularly in devices requiring mechanical
movement,' should be a prime consideration.

While the LRDC system is composed of units manufactured by
several different companies and does not necessarily suffer from this
heterogeneity, too wide a variety of m.anufacturers,can raise problems
of compatibility among devices. At this time, there is relatively little
standardization in the computer field, and the mismatching of system
components can cause a serious degradation of the system as a whole.
When a manufacturer has been selected for a particular device, be
sure that the standards for acceptance are clearly understood by both
parties and that the acceptance tests themselves are clearly specified
in advance. If at all possible, the actual installation of components
should be overseen by a competent engineer associated with the facility.

It is quite likely that the cost of preparing the software necessary
for the operation of the system will at least equal the investment in hard-
ware. Software preparation is inevitably slower than anticipated. In

102

addition to the visible costs of personnel salaries, one must consider
the costs of the delay before the system can be placed on a production
basis. Consequently, it is advisable that as much of the manufacturer-
supplied software be utilized as is possible. When LRDC began the
development of its current system, there was very little software avail-
able which was suitable for the laboratory's requirements. Consequently,

the time-sharing system was developed from scratch. More recently,
the Facility has been able to make extensive use of the newer software
supplied by the manufacturer. In most cases, it has been necessary
to modify the manufacturer's software to make it more compatible with
the requirements of the system, but the cost of modification is minimal
as compared with the expense of the complete development of similar
software. When software is developed in-house, compatibility with the
manufacturer's software should always be kept in mind.

Be pessimistic about the capability of your systems programming
staff. Despite its difficulty, or perhaps because of it, systems software
design and development is extremely interesting and challenging work.
Consequently, systems programmers often tend to promote approaches
which, while they are indeed feasible, are beyond the capacity of the
available programming staff. While a slightly more sophisticated and
elegant routine may be more appealing, it may not be at all justified in

terms of the extra effort required for its implementation.

If extensive system software development is required, a sub-
stantial period of time will elapse before the system is fully operational.
Although much of the system design and programming can and should be

done before the hardware is installed, the bulk of the work requires that
the equipment be installed and operating. There are at least three ap-
proaches to implementing a time-sharing system. First, all use of the
system can be delayed until the final system is fully operational. While

103

this approach eliminates the majority of the headaches, it is not feasible
except under the most unusual circumstances. Assuming that the desired
system is fairly sophisticated, a significant period of time will be required
for its implementation. Very few laboratories can justify the time and
expense expended before the system can be used. Furthermore, it is
extremely unlikely that a completely satisfactory system can be designed
without feedback from the researchers who will be using it.

A second alternative, and the approach taken by the LRDC Facility,
is to implement the skeleton of the desired system as soon as possible.
This allows the system to be used in at least a limited manner within
a much shorter period. The system is then expanded and refined as it
is being used. Although the production capacity of the skeleton system
falls far short of what is desirable, some form of a system is, at least,
available to those experimenters who are willing to tolerate its short-
comings. The experience acquired in using the system for experimental
control is quite valuable for its further development. This course of
action does have definite disadvantages, however; since the system is
constantly changing, control programs for particular experiments
quickly become obsolete. A considerable amount of effort is expended
in implementing the abbreviated routines which then have to be exten-
sively revised at a later date. Since the system is constantly being
modified, reliability cannot be maintained at a desirable level. In

general, this approach seems to lead to a situation in which the ef-
forts of the staff are constantly being diverted to fight brush fires- -
making relatively minor but urgently needed and time-consuming mod-
ifications to the system. As a consequence, the overall development
of the full system is seriously retarded and production is held at a low
level unduly long.

104

With the advantages of hindsight, a third, and more satisfactory
course of action, would appear to be to begin by implementing a very
limited, probably non-time-shared system that fulfills as many of the
laboratory's experimental requirements as possible. The effort re-
quired to implement even such a minimal system is negligible, but it
appears to be the shortest route to placing the laboratory on some sort
of an operational basis. Once the minimal system is operating at a
satisfactory level, an advanced time-shared system could be developed.
A limited but stable system would be available for research. A pro-
gramming staff could be developed and trained during the implementa-
tion of the first system, and they would have gained experience in work-
ing with this particular equipment. Use of the limited system may point
up problems which would be much more serious if they were discovered
in the more advanced system. Most importantly, work on the advanced
system could proceed much more rapidly if the maintenance of the cur-
rently operating system does not require the continual attention of the
staff.

Despite the two-step implementation plan described, it would be

quite unusual if the advanced system discussed became the "final" system.
System modifications and refinements always seem to be necessary. Sub-

ject terminals and I/O devices will be replaced as new components become
available. It is very likely that additional core or mass storage capacity
will be required and that the system in general will be upgraded as utili-
zation increases. Such alterations to the system will cause disruptions
of the research program but these disruptions can be minimized. When
new components are added to the system, the required down-time can be
kept to a minimum if the interface between the new component and the
system is completely designed prior to installation. Delivery time on
most computer support equipment is sufficiently long that the new soft-
ware required can be prepared and ready for testing as soon as the device

105

is installed. When new devices are added, every effort should be made
to make them appear to the system to be as similar as possible to exist-
ing devices. There are obvious limits to this strategy as when, for
example, it limits the efficiency of the total system, but system sta-
bility should not be sacrificed for a minor point of hardware design
elegance. Often, the software device control routines can adapt to es-
sential hardware modifications without altering the command structure
used by the experimental control programs in calling the routine.

One of the major advantages of the LRDC system, and of any
sufficiently flexible on-line system, is the variety of terminal devices
which it can support. In the long run, it is less expensive and more
productive to purchase off-the-shelf items if suitable devices are avail-
able but the in-house construction of terminal devices tailored to an ex-
perimenter's specific requirements can often be quite rewarding. Most
behavioral science laboratories do not have the resources to conduct an
extensive engineering research and development program, and ti num-

ber and scope of such projects should be limited accordingly. Again,
new devices should be designed so that their interface with the system
is as similar as possible to that of existing, standard devices. Be
pessimistic about the reliability of a new device when it is first installed
into the system. The researcher who requested the device will undoubt-
edly want to use it but his experiment should be treated as a special,
non-production class of run for which it is recognized that the usual
level of system reliability cannot be guaranteed. Any such experiment
should not be tied into a tight time schedule. If it is, the emergencies
which arise will have an unduly detrimental effect on the research of
the other experimenters using the system.

When 'software modifications are required, strive for upward
compatibility. That is, programs which ran under the previous system

106

should be able to run under the modified system without revision. There

is a strong temptation to implement any system improvements as soon
as they are available. In general, however, it is more efficient to up-
date the system in phases rather than piecemeal, i. e. , a number of

modifications can be collected and implemented at one time in what is
recognized as being a substantially revised system. This procedure is
particularly important if one or more of the modifications did not pre-
serve upward compatibility. While any system modification must be
tested extensively prior to implementation, there will always be a
greater chance of errors immediately following a system modification.
A limited number of major system revisions will mean that system re-
liability will be substantially decreased for short periods of time but
this is more desirable than having the system reliability continually de-
graded by frequent, minor revisions. When the system reaches a fairly
stable point, that is, when the systems staff begins to catch up with its
work load, it would be well to concentrate on refining the system. Un-
less they have been completely planned in advance, systems tend to
grow like Topsy. Take a hard look at the system characteristics and
options which are seldom used. Are they really necessary? Is there
redundancy in the systeM which could be eliminated?

Personnel and Management

The most important component of a productive on-line facility is
its staff. It will be no surprise to anyone remotely concerned with the
computer field to be told that attracting and keeping a competent staff is
a definite problem. The field has grown so quickly that there is a seri-
ous shortage of personnel in all areas of computer applications but par-
ticularly in programming. This is an especially serious problem for
installations in a university setting which do not usually have the financial

107

resources to compete with business and industry. The university
installation does have the advantage, however, of being able to attract
employees who are interested in furthering their education. Over half
of the current LRDC Computer Facility personnel are working toward
undergraduate or advanced degrees. About a quarter of these are full-
time students employed on a part-time basis but the majority are full-
time employees who are given some latitude in their working hours so
as to attend a limited number of classes.

Many university-based installations make extensive use of grad-
uate students as programmers, technicians, or engineers. This has
the advantage of providing an intelligent and often highly skilled staff
at a relatively low cost. However, it must be recognized that graduate
and undergraduate students are students first and employees second.
As a rule, they are not able to work regular hours and, consequently,
they are unsuitable for supervisory positions. Inevitably, they are
unavailable if an emergency develops in their area of specialization.
Due to the demands of their studies, their work often comes in bursts
separated by periods of low or negligible production. This makes it
very difficult to integrate their work into a larger staff effort.

It is possible to capitalize on the talent of student personnel,
however. The central core of the LRDC Facility staff and all of the
supervisors are full-time employees. Students employed on a part-
time basis are assigned specific problems in their area of specialization
which are not crucial to the immediate operations of the Facility. In

one case, a graduate student, who is very familiar with the Central Exec-
utive software, is used, essentially, as a systems programming consul-
tant. No students are used as Applications Programmers since it is
in this area that the pressure:, of scheduling and prompt delivery are

108

the most severe. Under this policy, the Facility benefits from the
particular skills of these students but is not hampered by the difficulty
of placing them on rigid time schedules.

One seemingly appealing means of extending the capacity of a
limited staff is by employing, consultants or by contracting work to a
software house. While this may be profitable under some circum-
stances, it is far from being a panacea. Consultants are expensive
and the good ones are usually very expensive. It is suggested that the
best way to use consultants is to have them in for short, one-shot ses-
sions for the purpose of evaluating the system or generating ideas which
can be carried out by the facility staff. This procedure assumes, of
course, that the consultant has been well supplied with systems docu-
mentation and information about the problem prior to his visit. If

software must be contracted out, it is preferable to limit the contracts
to specific programming tasks which do not form a central part of the
time-sharing system and are not critical for immediate operations.
Once the software is installed, the facility staff will have to maintain
and modify it. Working with someone else's program is never easy
and the task will be still more difficult if the software does not adhere
to the programming and documentation standards current in the facility.

There is the problem of the optimal allocation of the available
funds. In the opinion of the author, at least, the managerial positions
should be the most competitive with industry. If the management and
supervision is sufficiently skilled, productive use can be made of more
trainee-level employees. It is a particular bias of the author that the
manager of a computer facility supporting a research laboratory should
be a computer specialist, preferably with an industrial background, and
not a researcher. While hopefully, the researcher's work will benefit
from the use of the facility, its development and management is not a

109

means by which he can advance in his field. Consequently, the problems
of the facility must compete with his other commitments in teaching and
research. Furthermore, the researcher will not have the experience
and skills which a computer specialist can bring to the job. Managing

a facility the size of the LRDC installation is a full-time job requiring
all of the talents that the specialist can bring to bear. As is discussed
below, the procedures which seem to be necessary to develop a produc-
tive computer facility are at variance with the approach taken to research
in an academic setting. An industrially trained computer specialist is
more likely to institute the type of strict organization which appears to
be required for the facility to provide adequate service to the experi-
menters who are its customers. This is not to imply that the manager
be given the authority to determine the functions of the facility--this is
the responsibility of the research staff who are the users of the facility- -
but he should be given full authority for determining the operating pol-
icies of the facility and given a full voice in determining the direction
of future development. The manager can also obtain additional recogni-
tion by carrying out research and development in his own field, if he so
desires.

The justification for a computer system in a research laboratory
is the service which it provides the experimenters. The system is not
a toy or a testbed for the ideas of the engineers and systems programmers.
Whenever a modification to the system is proposed, it must be evaluated
on the basis of the degree to which it will improve research production.
The only acceptable basis for judging the systems's valUe is the quantity
and quality of the research which it supports. Thus, the utility of the
system is the joint responsibility of the facility management and their
users, the experimenters.

110

The development of a time-shared, on-line system is a state-
of-the-art endeavor. The problems are real but not insurmountable.
The effective operation of a facility, like the LRDC installation, re-
quires efficient cooperation among a number of specialists. Although
the idea is distasteful to most academically oriented researchers, it
is the author's opinion that to be most effective, the facility staff must
be run as a heavily organized and tightly scheduled team. It is often
accepted as a matter of fact that software development takes longer than
the time allotted for it. The same often holds for hardware modification
and repairs. It is only by means of a tightly organized system of sched-
uling and frequent progress reports that the integrated development of
a system can proceed on anything like a regular basis.

As was mentioned above, much of the responsibility for the
success of an on-line laboratory lies with the experimenters who use
it. SiMply because the system is available does not mean that it should
be used for all experiments. In many cases the system provides no ad-
vantage over flash cards or a memory drum, and its use serves only to
retard the work on more suitable research. Experimenters should be
encouraged to specify their long-range research plans in as much detail
as possible. This will enable the applications programming staff to
develop or at least design a package of programs which can control a
series of experiments with only minor modifications. This is much less
time-consuming and expensive than a series of one-shot experimental
programs. Whenever possible, the experimenters as a group, and the
facility 'staff should agree on standardized formats for the input and
output of experimental parameters and data production.

In the LRDC laboratory, it is unusual for an experimenter to
write his own control programs. This is partially due to the complex
nature of the system and the current lack of a satisfactory higher level

language, but even if this were not the case, the author would recommend
that the experimenter turn over his programming tasks to an applications
programming group. The behavioral researcher is a specialist in his
own field and that field is not computer programming. In some disci-
plines, such as mathematics, there is such a serious communications
barrier between the scientist and the programmer that it is often easier
for the scientist to do his own prop nming than to attempt to communi-
cate his ideas to a programmer. This is riot the case in behavioral ex-
perimentation. After investigating several approaches at LRDC, the
most satisfactory appears to be that of having the researchers communi-
cate their programming requirements to one articulate skilled Programmer,
in this case, the Supervisor of Applications Programming. The Supervisor
does relatively little programming himself but has become a specialist in
communicating with the experimenters and in the design of experimental
control programs. He obtains his information by means of rudimentory
flowcharts and discussions with the experimenter and/or the experimenter's
staff. In the course of these discussions he is in a position to make sug-
gestions about the optimal use of the different terminal devices, being
familiar with the strengths and weaknesses of each, and at times suggests
alterations in the experimental procedure to capitalize on the benefits of
the system capabilities. On the basis of these discussions and materials,
he designs the program by producing the detailed flowcharts fromwhich
the members of his staff work. Once the programming is underway, ex-
perimenters inevitably discover aspects of the experimental procedure
which they wish to change. Since the Supervisor is familiar with the
nature of the program, its current status, and the ,ability of the particular
Programmer, he is able to give the experimenter a fairly accurate estimate
of the additional time required to make the requected alterations.

I fear that I may have painted an overly-cautious, if not bleak, pic-
ture of the development of an on-line laboratory. This is not at all my

112

intention. The reader should be aware that such a project is a major
undertaking and not one to be entered into lightly. There are dangerous
pitfalls, particularly in the area of management, which can seriously
curtail the productivity of the laboratory. While it is almost certain
that some mistakes will be made, they can be held to a minimum. Cor-
rectly planned, developed, and managed, a computer-based laboratory
can be a very rewarding venture. All in all, the potential benefits of
on-line experimentation are well worth the effort.

113

R EF ER ENC ES

Bright, G. W. Scheduling and memory allocation algorithms for
University of Pittsburgh computer based instruction system.
Research Report 65-5KO-TEACH-R1. Pittsburgh, Pa.:
Westinghouse Electric Corp., 1965.

Broadley, W. H. Utilities. 4. CORFIL, Computer facility documen-
tation, Pittsburgh, Pa. : Learning Research and Development
Center, University of Pittsburgh, 1969.

Buckwalter, J. T. Systems. 3. CARD, Computer facility documenta-
tion, Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1967.

Buckwalter, J. T. Systems. 3. GRAB, Computer facility documenta-

tion, Pittsburgh, Pa. : Learning Research and Development

Center, University of Pittsburgh, 1966.
Buckwalter, J. T. Systems. 3, MAGTAP, Computer facility docu-

mentation, Pittsburgh, Pa.: Learning Research and Develop-
ment Center, University of Pittsburgh, 1967.

Buckwalter, J. T. Systems. 3. PUNZIT, Computer facility rlocumen-

tation, Pittsburgh, Pa. : Learning Research and Development
Center, University of Pittsburgh, 1969.

Buckwalter, J. T. Systems. 3. RENTRY, Computer facility docu-
mentation, Pittsburgh, Pa. : Learning Research and Develop-
ment Center, University of Pittsburgh, 1966.

Buckwalter, J. T. Systems. 3. SCREEN, Computer facility docu-
mentation, Pittsburgh, Pa. : Learning Research and Develop-
ment Center, University of Pittsburgh, 1969.

Buckwalter, J. T. SysteMs. 3. SYSERR, Computer facility docu-
mentation, Pittsburgh, Pa. : Learning Research and Develop-
ment Center, University of Pittsburgh, 1966.

114

Chadwick, M., & Fitzhugh, R. J. A user's guide to the LRDC
integrated MACRO package, Pittsburgh, Pa. : Learning Re-

search and Development Center, University of Pittsburgh, in
preparation.

Cook, C. Systems. 3. KBUNLK, Computer facility documentation,
Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1966.

Digital Equipment Corporation. FORTRAN IV, Programmer's reference

manual, PDP-9 advanced software system. Maynard, Mass. :
Author, 1968a.

Digital Equipment Corporation. I/O monitor guide for paper tape sys-
tems, PDP-9 advanced software system, Maynard, Mass. :

Author, 1968b.
Digital Equipment Corporation. MACRO-9 assembler, programmer's

reference manual, PDP-9 advanced software system. Maynard,
Mass. : Author, 1967.

Fitzhugh, R. J. Utilities. 4. DEBUG, Computer facility documentation,

Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1969.

Fitzhugh, R. J., & Katsuki, D. Th.,e sensitive screen as a flexible
response device in CAI and behavioral research. Pittsburgh, Pa.:
Learning Research and Development Center, University of
Pittsburgh, in preparation.

Glaser, R., Ramage, W, , & Lipson, J. The interface between student

and subject matter. Technical Report 5. Pittsburgh, Pa.: Learn-
ing Research and Development Center, University of Pittsburgh,
1964.

Glaser, R., & Ramage, W. W. The student-machine interface in in-
struction. 1967 IEEE Internatiolial. Convention Record, Part 10,
New York: Institute for Electrical and Electronics Engineers,
1967, pp. 52-59.

115

Greer, B. F. Digital computers in research. New York: McGraw-
Hill, 1963.

Jackson, M. Systems. 3. DPHONE, Computer facility documentation,

Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1968.

Jackson, M. Systems. 3. CROW, Computer facility documentation,
Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1969.

Jackson, M. Systems. 3. DOODLE, Computer facility documentation,

Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1969.

Jackson, M. Systems. 3. SOCK, Computer facility documentation,
Pittsburgh, Pa.: Learning Research and Development Center,
University of Pittsburgh, 1968.

Judd, W. A. Systems. 3.. MEMAL, Computer facility documentation,
Pittsburgh, Pa. : Learning Research, and Development Center,
University of Pittsburgh, 1967.

Judd, W. A. Systems. 3. WAIT, Computer facility documentation,

Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1967,

Judd, W. A., & Glaser, R. Variability of response latency in paired-
arJsociate learning as a function of training procedure. Technical
Report 9. Pittsburgh, Pa. : Learning Research and Development
Center, University of Pittsburgh, 1970.

Judd, W. A., & Glaser, R. Response latency as a function of training
methods, information level, acquisition and overlearning.
Journal of Educational Psychology Monograph Supplement,

1969, 60, No. 4, part 2.
Kaupe, A. F. Operating software for a computer-based instruction

system. Technical Report 3. Pittsburgh, Pa. : Learning Re-
search and Development Center, University of Pittsburgh, 1966.

116

Nemitz, B. P. SKOOLBOL: A simplified user's language for programming
the PDP-7. Working manual. Pittsburgh, Pa. : Learning Research

and Development Center, University of Pittsburgh, 1968.
O'Malley, J. M. , Glaser, R., & Resnick, L. Response discrimination

pretraining and list length in learning a multiple discrimination.
Report in preparation.

Pethia, R. D. Systems. 3. DPHONE, Computer facility documentation,

Pittsburgh, Pa. : Learning ResearCh and Development Center,
University of Pittsburgh, 1969.

Pethia, R. D. Systems. 3. HYSPRJ, Computer facility documentation,
Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1969.

Pethia, R. D. Systems. 3. TOUCHE, Computer facility documentation,
Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1968.

Pethia, R. D. Utilities. 4. SYSLOD, Computer facility documentation,

Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1969.

Ramage, W. W. Language properties for computer-assisted instruction.
Conference notes. Pittsburgh, Pa. : Learning Research and De-
velopment Center, University of Pittsburgh, 1967.

Ramage, W. W. A mathematical investigation of three attributes of
automated instruction. Pittsburgh, Pa.: Learning Research and
Development Center, University of Pittsburgh, in preparation.

Skillen, R. J. Utilities. 4. RECORD, Computer facility documentation,
Pittsburgh, Pa. : Learning Research and Development Canter,
University of Pittsburgh, 1969.

Slaughter, B. G. Systems. 3. DISC, Computer facility documentation,
Pittsburgh, Pa. : Learning Research and Development Center,
University of Pittsburgh, 1968.

117

Slaughter, B. G. Systems. 3. PRINTR, Computer facility documentation,
Pittsburgh, Pa.: Learning Research and. Development Center,
University of Pittsburgh, 1969.

Tobias, S. & Glaser, R. Effect of pupil choice of instructional method

on achievement and attitude. Manuscript in preparation.

Uttal, W. R. Real-time computers: Techniques and applications in the
psychological sciences. New York: Harper & Row, 1968.

118

APPENDIX A

Index of Computer Facility Documentation

119

MARCH 2, 1970

. INDEX.O.

. INTRODUCTION AND GENERAL DESCRIPTION.1.
.1.APPLICATIONS DOCUMENTATION
. 1.DESCRIPTION OF THE CURRENT LRDC COMPUTER FACILITY SYSTEM
. 1.FLOWCHARTS
. 1.LRDC COMPUTER-BASED INSTRUCTIONAL SYSTEM CENTRAL EXECUTIVE
. 1.SYSTEMS DOCUMENTATION
. 1.SYSTEM EQUIVALENCES

. HARDWARE.2.
**.2.CARD READER
*.2.DATAPHONE
.2.DISC
.2.INBUS
.2.INFORMATION COLLECTOR
.2.7/9 INTERFACE
.2.INTERRUPT
.2.10T
.2.KEYBOARD
.2.MAG TAPE
.2. PRINTER
.2.RA PROJECTORS
.2.RELAY BUFFER
.2.TELETYPE
.2.TOUCH
.2.TRAP

*DOCUMENTATION NOT YET AVAILABLE
**DOCUMENTATION NOT ACCURATE

.SYSTEMS.3.

.EXECUTIVE PACKAGES
.3.EXEC III

.CENTRAL EXECUTIVE.
.3.CALGON
.3.COMMON

SETCOM
. 3.CONVRT

*.3.COUNT
*.3.CREATE
.3.CITY
.3.DATIME
.3.DEDTIM

**.3.DIMROU

120

*.3.FIND
*.3.GETJS
.3.GREASCAN

GRAB
RELEAS
SCAN

*.3.INSERT
.3.10INT

*.3.KILL
. 3.LOCATE

**.3.MASTER TABLES
.3.MEMAL

*.3.NEWLST
. 3.0CTSCN

*. 3. PUTES
.3.RELAY BUFFERS - APPLICATIONS

CLRIMG
CNGIMG.
SET1MG

*.3.RELAY BUFFERS - SYSTEMS
CLRIMG
CNGIMG
SETIMG

*.3.REMOVE
.3.RENTRY

**.3.SETUP
**.3.SUSPEN

.3.SYMSCN

.3.SYSERR
**.3.TAKE

.3.TARRY
**.3.TIMDAY

.3.TIMSTR

.3.WAIT
*DOCUMENTATION NOT YET AVAILABLE

**DOCUMENTATION NOT ACCURATE

.PERIPHERAL EQUIPMENT ROUTINES
.3.BAGTEL
.3.CARD
.3.CROW
.3.DISKUS
.3.DPHONE
.3.HYSPRJ
.3.INVENT
.3.KBUNLK
.3.LASTFL
.3.MONTAP

*.3.MTAPE
.3.NEWTAP
.3.PRINTR

121

.3.PRJSET

.3.PUNCH

.3.PUNZIT

.3.SCREEN

.3.SEEK

.3.TOUCHE
*DOCUMENTATION NOT YET AVAILABLE

. OPERATOR CONTROL ROUTINES.
.3. DOODLE

.SOCK.DRED

.SOCK.DWRT

.SOCK.DDEL

.SOCK.DLST
.3.SOCK
.3.SOCK.ANFG
.3.SOCK.CNAD.CNDL
.3.SOCK.CRET
.3.SOCK.JBG0
.3.SOCK.JOBZ
.3.SOCK.KILL
.3.SOCK.RELS
.3.SOCK.SETP
.3.SOCK.SUSP
.3.SYSDMP

.SOCK.DUMP

. UTILITIES.4.
.4.ASMLOD
.4.ASMWRT
.4.ASPRIN
.4.BCVTI2
.4.BINTAPE DUMP
. 4.CORFIL
.4.DISCRD
.4.DISOMP
.4.DISK EXERCISER
. 4.DISK TEST ROUTINE
. 4.DISK9
.4.DUMP
.4.DUMPTY
.4.FILPLA
.4.FLSTAT
.4.F0M102
.4.F0M104
.4.LODUMP
.4.MLOP
.4.00LMT
.4.0CTAL CARD LOADER
. 4.PMD
. 4.PRINTER

122

.4.RECORD

.4.SWAP

.4.SYSLOD

. V.SYSWRT

.4.TAPE SPLASH

.4.TND3

.4.90T09
*DOCUMENTATION NOT YET AVAILABLE

.DIAGNOSTICS.5.
.5.CLOCK
.5.CRT
.5.DISCHK
.5.MAGTAPE
.5.PMDTST

*.5.PRINTER ACCEPTANCE TEST
.5.PRINTER ALIGNMENT
.5.TRAPT

*DOCUMENTATION NOT YET AVAILABLE

.SERVICE ROUTINES.6.
*.6.LINEDRAW

*DOCUMENTATION NOT YET AVAILABLE

.MANUFACTURER SUPPLIED SOFTWARE.7.
.7.PDP-7 USERS HANDBOOK
.7.PDP-9 USERS HANDBOOK (DEC-F-95)
. 7.PDP-9 MACRO ASSEMBLER (DEC-9A-AM9B-D)
. 7.PDP-9 FORTRAN IV (DEC-9A-KFZA-D)
.7.PDP-9 MONITORS (DEC-9A-MABO-D)
.7.PDP-9 I/O MONITOR GUIDE FOR PAPER TAPE SYSTEMS (DEC -9A- NGAA -D.)
. 7.PDP-9 UTILITY PROGRAMS (DEC-9A-GUAB-D)
.7.PUNCH9

.HIGH LEVEL LANGUAGES.8.
.8.SKOOLBOL - A SIMPLIFIED USERS LANGUAGE FOR PROGRAMMING THE PDP-7

.APPLICATIONS.9.
.9.ANGLE 6
.9.BIGSPELL/TTY
.9.FEEDBACK SPELLING NAME FILE UTILITY
.9.FEEDBACK/PHASE I DATA BACKUP UTILITIES
.9.LCCI
.9.LETTER DISCRIMINATION
.9.LETTER DISC. DATA
.9.LETTER DISC.DATA REDUCTION

123

.9.LETTER DISC. OUTPUT

.9.NUMBERS SECT I

.9.NUMBERS SECT 2
*.9.NUMBERS SECT 3
.9.NUMBERS 1 OUTPUT PROGRAM

*.9.NUMBERS 2 OUTPUT PROGRAM
.9.PHASE 1 SPELLING NAME FILE UTILITY

.9.PREFERENCES

.9.PREFERENCES DATA REDUCTION

.9.PREFERENCES OUTPUT

.9.TAP It, CONDITION I

.9.TAP II, CONDITION II

.9.TAP II, CONDITION III

.9.TAPOUT
*DOCUMENTATION NOT YET AVAILABLE

124

APPENDIX B

LRDC COMPUTER FACILITY

APPLICATIONS PROGRAMMING GROUP

DOCUMENTATION STANDARDS MANUAL

125

CONTENTS

I. INTRODUCTION

II. APPLICATIONS DOCUMENTATION OUTLINE AND EXPLANATION

III. EXAMPLE

A. LCCI

126

I. INTRODUCTION

ThR following outline is designed to assist applications prngrammers

when documenting a program.' In writing any documentation, the programmer

should attempt to completely cover all aspects of the program in a clear and

concise manner. The documentation should contain enough information to:

a. uniquely identify the program

b. explain the functions it performs, and

c. enable others to use the program.

It is also necessary that applications documentation contain enough

information so that other programmers may understand the logic and flow of

the program ancUto expand or modify the program, if necessary.

In summary, the chief objective of any documentation should be to

clearly describe and explain all aspects of the program's structure, use,

and operation. The documentation for LCC (.9.LCCI, 10/10/69) clearly illus-

trates the documentation procedures described on the following pages.

127

II. APPLICATIONS DOCUMENTATION OUTLINE AND EXPLANATION

1. PROGRAM NAME:

Contents: Name of project.

2. PROGRAM I.D.:

Contents: Identification code for program.

3. REQUESTED B::

Contents: Name of user who requested program.

4. USER REPRESENTATIVE:

Contents: Name of person to whom questions should be directed.

5. DATE:

Contents: Date of documentation.

6. PROGRAMMER(S):

Contents: Names of original programmer(s).

7. MACHINE:

Contents: The basic machine on which the program was designed to run.

8. LANGUAGE:

Contents: The programming language in which the program was written.

9. ABSTRACT:

Contents: A brief description of the main function of the program --
what it does and how it fits into the system.

10. HARDWARE REQUIREMENTS:

Contents: A list of the I/O devices used by the program.

11. SOFTWARE REQUIREMENTS:

11.1 EXEC VERSION:

Contents: Identification of Executive system for which the
program was written.

128

11.2 PERP ROUTINES REQUIRED:

Contents: Listing of the PERP routines the program requires.

11.3 MEMAL REQUIREMENTS:

Contents: Listing of the memal blocks used in the program.

11.4 GRABS AND RELEASES:

Contents: Indication of when I/O devices are grabbed and released.
The devices should be specifically named.

11.5 PROGRAM SUSPENSIONS:

Contents: Every suspension in the program should be indicated
with the amount of time or suspension reason identified
for each.

11.6 MEMORY LAYOUT:

Contents: The attached appendix sheet should be filled out com-
pletely for all four fields starting with field zero.

All logical blocks should be identified. For example,
the following should be shown: data, Common, Memel,
mainline logic, and the literal or constant pool.

It will be assumed that all core locations not listed
will be available for use by other programs.

11.7 AUXILIARY STORAGE REQUIREMENTS:

Contents: A listing of what storage other than core storage is
required by the program. The listing should be by
devices type.

11.8 REENTRANT STATUS:

Contents: An indication of whether or not the program is time
sharable and/or code sharable.

12. DESCRIPTION OF PROGRAM FLOW:

12.1 GENERAL INTRODUCTION AND PROGRAM PHILOSOPHY?,

Contents:. An introduction, and explanation of the logical approach
taken by the program.. For example, if the program were
data driiren, that concept and its application to the
prograth would be explained here.

129

12.2 NARRATIVE:

Contents: A verbal description of program flow in two parts.
First, a description of the mainline flow. Secondly,
a brief description of the paths through the sub -
routines. Any unique or special circumstances as
well as input data structures should be explained in
this section.

Reference should be made to symbolic locations in
the program. This description should be written with
the understanding that the narrative along with a list -
lng of the program and a complete set of program flow-
charts would provide enough information for a program-
mer not familiar with the program to follow the program
flow and understand the main functions of the program.

12.3 FLOWCHARTS:

Contents: All significant subroutines and the mainline of the
program should be flowcharted.

12.4 110 TiECORD DESCRIPTION:

Contents: The attached appendix sheet should be completed as
follows:

DATA NAME: The name of the field as used in the program.

FORMAT: An indication of the field format, i.e., packed
ASCII, sixbit, etc.

SIZE: The number of core locations for the field.

FREQUENCY OF USAGE: An indication of how frequently
the contents of the field are
used, i.e., once per frame, twice
per frame, etc.

USAGE: How the contents of the field are used.

12.5 FILE DESCRIPTION:

Contents: The attached appendix sheet should be completed as
follows:

FILE ID: File name used in the program.

DEVICE: Device on which the file resides.

RECORD LENGTH: Length of a single record in words.

BLOCKING FACTOR: Block size.

TOTAL 0 RECORDS: Exact and/or good approximation of
the number of records in the file.

130

I/O: Indicate if file is input or output.

USAGE: Indicate how the information in the file is used.

13. COMPUTER OPERATOR PROCEDURES:

Contents: This section should describe all the operator procedures neces-
sary to run the program(s) being documented. Any of the follow-
ing subsections that are not applicable should simply be ex-
cluded. The name of each program should be included in paren-
'thesis after each major category name.

13.1 INPUT DATA:

Contents: If there is any input data handling to be done by the
operator, the following subsections should be completed.
Again, if a subsection does not apply, exclude it.

13.11 DATA PREPARATION:

Contents: A description of, or instructions for, any physi-
cal preparation of input data by the operator.
This may include mounting a specific magtape, plac-
ing cards in the card reader, placing paper tape
in the reader or any other possible preparation.

13.12 HARDWARE SYSTEM PREPARATION:

Contents: A complete list of things to do with any of the
hardware or peripheral devices to facilitate in-
put data preparation.

13.13 PROGRAM LOADING PROCEDURES:

Contents: If a special program is used for data preparation,
its loading instructions should be under this sub-
title. There should also be instructions to load
a backup program in case there is a failure in
loading the primary program.

13.131 STANDARD PROCEDURE:

Contents: If the program is to be loaded from disk
using DOODLE, the file name must be given
along with any information concerning
possible field dependence of the file.

131

13.132 BACKUP PROCEDURE:

Contents: When the program is to be read from
magtape using the T & D TRIO, the
tape number(s) and file numbev(s)
must be given. Finally, if a program
is on punched paper tape, the location
of the tape tray, identification of
the program tape(s), loading sequence
of the tapes and any information cone
cerning possible field dependence of
the tapes.

13.14 SYSTEM INITIALIZATION:

Contents: A complete list of control teletype command
examples necessary to set up and start the
program. In constructing the examples, bear
in mind that the job number and physical unit
number are variable.

13.15 OPERATOR RUNNING PROCEDURES:

13.151 NORMAL OPERATION:

Contents: A clear description of, or instructions
for, any thing the operator must do
while running the input data prepara-
tion program.

13.152 PROGRAM/SYSTEM ERRORS:

Contents: Include possible sources of program
failure and steps to recover from a
possible failure.

13.16 SYSTEM TERMINATION:

Contents: A complete list of control teletype command ex-
amples necessary to terminate the input data
program. Also some indication of how the operator
would know when the program has normal', terminated
itself.

13.17 OUTPUT DATA HANDLING:

Contents: Clear instructions for whatever the operator should
do with the output (if any) from the input data
program.

132

13.2 MAIN PROGRAM:

Contents: A complete, precise description of the loaaing, operating
and unloading of the main program.

13.21 HARDWARE SYSTEM PREPARATION:

13.211 CENTRAL PROCESSOR:

Contents: An indication of the necessary action
other than the initialization of the
time-sharing system.

13.212 STUDENT STATION:

Contents: A complete list of the things an operator
must do to make a student station opera-
tional. Include such things as CROW belt
numbers, slide trays, projectors, etc.

13.22 PROGRAM LOADING:

Contents: Clear instructions for the standard procedure and
backup procedure for loading the main program.
See 13.13 PROGRAM LOADING PROCEDURES.

13.23 SYSTEM INITIALIZATION:

Contents: A complete list of control teletype examples to
set up and start execution of the main program.

13.24 OPERATOR RUNNING PROCEDURES:

Contents: See 13.15 OPERATOR RUNNING PROCEDURES for details.

13.25 SYSTEM TERMINATION:

Contents: See 13.16 SYSTEM TERMINATION for details.

13.3 OUTPUT DATA PROGRAM:

Contents: If no special program is necessary to process output data,
then this section should only tell what is to be done with
the output. Things such as labeling, routing, etc. should
be here.

If a separately documented output program is used, this
section should refer to that documentation. If the output
program is included in this documentation, the following
subsections should be used to clearly describe the program
operating procedures. Reference is to previously defined
icems.

133

13.31 DATA PREPARATION:

Contents: See 13.11.

13.32 HARDWARE SYSTEM PREPARATION:

Contents: See 13.12.

13.33 PROGRAM LOADING:

Contents: See 13.13.

13.34 SYSTEM INITIALIZATION:

Contents: See 13.14.

13.35 OPERATOR RUNNING PROCEDURES:

Contents: See 13.15.

13.36 SYSTEM TERMINATION:

Contents: See 13.16.

13.37 OUTPUT DATA HANDLING:

Contents: An exact description of paper tape labels, output
bins, etc., as they apply to this output data.

14. OPERATIONS PROCEDURES SUMMARY:

Contents: A summarization of operator procedures for a single run of
the program.

14.1 INPUT DATA PROGRAM:

Contents: Input data program requirements including loading and
termination.

14.2 TERMINAL:

Contents: A list of student station set up requirements.

14.3 PROGRAM LOADING:

Contents: Normal DOODLE request format.

14.4 INITIALIZATION AND START-UP:

Contents: Steps to begin execution of program.

14.5 RUNNING PROCEDURES:

Contents: Indicate any operator action required during run.

134

14.6 TERMINATION AND OUTPUT PROGRAM:

Contents: Steps to terminate main program and collect output
data.

15. USER PROGRAM OPERATION PROCEDURES:

Contents: This section should clearly describe all the procedures
necessary to operate the program as the user sees it.
These instructions should be so written that even an un-
trained or unexpected user would have a minimum of diffi-
culty operating the program.

15.1 INPUT DATA PREPARATION:

Contents: A description of input data preparation including
items such as: Data Vocabulary and Data Syntax.
Extreme detail and illustration with examples should
be given.

15.2 START-UP:

Contents: Any steps necessary for the user to start or initial-
ize the program. Include a complete list of messages
given by the program for this purpose.

15.3 PROGRAM OPERATION:

Contents: A clear description of whatever the user must do during
program operation. Again, include all possible teletype
or CRT messages and an explanation of each of them.

15.4 TERMINATION:

Contents: An explanation of what the user must do to properly
terminate the program. Include all messages to this
effect.

15.5 PROGRAM LIMITATIONS:

Contents: An explanation of just what may or may not be done with
the program while it is running. Include such things
as warnings against improper start-up, termination, or
restarting.

15.6 OUTPUT DATA HANDLING:

Contents: If there is a possibility of the user not having output
processed immediately, this section should include an
explanation of how the user may have the raw data
processed at a later time. This section may also include
an explanation of printed output, tape markings, or any
other information concerning the output data.

135

15.7 POSSIBLE SOURCES OF PROGRAM. FAILURE:

Contents: A list of all the things (within reason) the user might
do that would cause a program failure. Include a descrip-
tion of how the user might know that the program is down.

15.8 RECOVERY. FROM PROGRAM FAILURE:

Contents: Anything the'user can do to recover from a program fail-
ure (if possible),

16. ADDITIONAL REFERENCES:

Contents: A listing of all reference material associated with the program
should be included here.

136

-EXAMP L il.-

11.6 MEMORY LAYOUT

PROGRAM: ID:

137

1I t.o
.)

1
2
.
4

I
/
O

R
E
C
O
R
D

D
E
S
C
R
I
P
T
I
O
N

P
P
.

G
R
A
M
:

I
D
:

R
E
C
O
R
D

N
A
M
E
:

L
E
N
G
T
H
:

I
/
O

S
T
A
T
U
S
:

I
N
P
U
T

T
O
:

O
U
T
P
U
T

T
O
:

D
A
T
A

N
A
M
E

.

F
O
R
M
A
T

S
I
Z
E

F
R
E
Q
U
E
N
C
Y

O
F

U
S
A
G
E

U
S
A
G
E

to r-
1

R
E

C
O

R
D

L
E

N
G

T
H

12
.5

 F
IL

E
 D

E
SC

R
IP

T
IO

N

PR
O

G
R

A
M

:
ID

:

FI
L

E
 I

D
D

E
V

IC
E

B
L

O
C

K
IN

G
T

O
T

A
L

I
/0

FA
C

T
O

R

R
E

C
O

R
D

S
U

SA
G

E

